精确率:P=TP/(TP+FP),西瓜书里也叫查准率;召回率:R=TP/(TP+FN),西瓜书里也叫查全率。F1 值:F1 = 2*(P*R)/(P+R),精确率和召回率的调和均值。可以看出,精确率和召回率的区别在于分母,精确率关心的是预测为真的数量中有多少真正对的 (而不是其他类错误预测为这一类),而召回率关注的是这一类有多少...
因此,选择合适的阈值点,就需要根据实际问题需求,比如我们想要很高的精确率,就要牺牲掉一些召回率。想要得到很高的召回率,就要牺牲掉一些精准率。但通常情况下,我们可以根据他们之间的平衡点,定义一个新的指标:F1分数(F1-Score)。F1分数同时考虑精确率和召回率,让两者同时达到最高,取得平衡。F1分数表达式为 上图P-R...
ROC曲线含义 KS曲线(Kolmogorov-Smirnov) PRC曲线(Precision-Recall Curve) AUC面积 (Area Under Curve) Gini系数 (Gini coefficient ) F1 上面我们介绍了精确度和召回率两个概念,但在实际建模过程中,这两个指标往往是此消彼长的,所以想要找到二者之间的一个平衡点,我们就需要一个新的指标:F1分数。F1分数同时考虑...
1.指标含义 1.1 混淆矩阵 1.2准确率Accuracy 1.3精确率Precision 1.4召回率Recall 1.5 F1值 2. 二分类例子 2.1 指标计算 2.2 sklearn调用 3. 多分类例子 3.1 指标计算 3.2 sklearn调用 4.参考 这几个指标在分类问题中经常使用,用来衡量模型的能力,因此了解它们的确切含义以及如何调用sklearn中的相应函数,是十分...
F1值是对精确率和召回率的综合考量。它提供了一个单一的指标来平衡精确率和召回率的表现。F1值越高,说明模型在精确率和召回率上都表现得越好。F1值的计算公式有两种形式,但它们是等价的: F1 = 2 / (1/Precision + 1/Recall) (方便理解的形式)
* F1值:是精确率和召回率的调和平均值,用于综合考虑两者的表现。F1值越高,说明模型的性能越好。F1值的计算公式可以有两种形式,一种是便于理解的形式:F1 = 2 / (1/Precision + 1/Recall),另一种是标准公式:F1 = 2 * Precision * Recall / (Precision + Recall)。通过理解和优化这些指标,我们可以更...
在这种情况下,F1得分(F1 Score)可能更适合。精确率(Precision)关注的是预测结果的质量。具体来说,它衡量的是所有被预测为正样本的样本中,实际上也是正样本的比例,也叫查准率。召回率(Recall)则关注的是原样本中正样本被正确预测出来的比例,也叫查全率。F1得分是精确率和召回率的调和平均值,取值范围从0(表现差)...
精确率、召回率、F1值的通俗解释如下:1. 精确率: 定义:在模型预测为正类的样本中,有多少实际上是正类。 公式:精确率 = TP / 。 解释:精确率反映了模型预测为正样本的准确性。如果精确率高,说明模型预测为正样本的实例中,真正为正样本的比例高,即模型预测准确。2. 召回率: 定义:在...
F1值是精确率与召回率的调和平均数,用于平衡二者关系。若模型精确率70%、召回率60%,F1值约为64.7%。当任务既要求减少误报又需降低漏检时,F1值能更全面评估模型表现。例如客服工单分类任务,既要避免将紧急工单误判为普通问题(需高精确率),又要确保所有紧急工单都被识别(需高召回率),此时F1值可作为核心指标。 相...
准确率的含义是:预测为正例的那些数据里预测正确的数据个数” 2,召回率 召回率的含义是:真实为正例的那些数据里预测正确的数据个数 3,准确率和召回率的相互关系 准确率和召回率互相影响,理想状态下肯定追求两个都高,但是实际情况是两者相互“制约”:追求准确率高,则召回率就低;追求召回率高,则通常会影响准确...