直线y=2 无斜率.因为k=y∕x 无论y取何值,x都得0.可x作分母,所以无斜率. 结果一 题目 直线y=2的斜率是什麼?为什麼?直线x=2的斜率是什麼?为什麼? 答案 直线y=2 无斜率.因为k=y∕x 无论y取何值,x都得0.可x作分母,所以无斜率.直线x=2 k=0 .因为k=y∕x 无论x取何值,y都得0. 相...
圆x2+y2=4的圆心坐标为(0,0),半径为2.∴圆心(0,0)到直线x+y-1=0的距离为d= 2 2= 2<2∴直线x+y-2=0与圆x2+y2=4相交.故答案为:相交本题考查学生掌握判断直线与圆位置关系的方法是比较圆心到直线的距离d与半径r的大小,灵活运用点到直线的距离公式化简求值,是一基础题.求出圆心到直线的距离d...
已故一条直线经过P1(X1,Y1)和P2(X2,Y2),且X1#X2,求该直线的方程. 一直线过点A(x1,y1)和点B(x2,y2)和点C(1,3).又x1+x2=2 ,y1+y2=6 ,则此直线的方程为? 若3x1-2y1=5,3x2-2y2=5(x1不等x2),则过A(x1,y1),B(x2,y2)的直线的方程为 特别推荐 热点考点 2022年高考真题试卷...
设平面区域D由直线y=x,y=2及x=1围成,则二重积分∫∫xdσ = D2011年专插本真题 1/3请用大一的高等数学知识范围回答例如 D区域{ 1≤x≤2; x≤y≤2;}∫(1→2)dx ∫(x→2) xdy=
∴16p2-8p=48,∴2p2-p-6=0,∴(2p+3)(p-2)=0,∴p=2,(2)由(1)知y2=4x,所以F(1,0),显然直线MN的斜率不可能为零,设直线MN:x=my+n,M(x1,y1),N(x2,y2)由\((array)l(y^2=4x)(x=my+n)(array).,可得y2-4m-4n=0,所以y1+y2=4m,y1y2=-4n,...
,y₀),以简化运算。抛物线的焦点弦:设过抛物线y^2=2px(p>0)的焦点F的直线与抛物线交于A(x₁,y₁)、B(x₂,y₂),直线OA与OB的斜率分别为k₁,k₂,直线l的倾斜角为α,则有y₁y₂=-p^2,x₁x₂= ,k₁k₂=-4,|FA|= ,|FB|= ,|AB|=x₁+x₂+p。...
解析 [答案]B[答案]B[解析][分析]根据方程x+y-2=0,得y=-x+2 ,得到斜率为-1 ,再由斜率和倾斜角的关系求解.[详解]由x+y-2=0,得y=-x+2所以斜率设倾斜角为α则BE=1因所以α=135°故选:B[点睛]本题主要考查直线的倾斜角和斜率及其关系,属于基础题. ...
由于双曲线xy=1和直线y=x,y=2的交点分别为(1,1)(舍掉(-1,-1))、( 1 2,2)因此,以y为积分变量,得面积 A= ∫ 2 1(y− 1 y)dy= 3 2−ln2. 首先,将双曲线xy=1和直线y=x,y=2的交点求出来,然后转化为定积分求面积即可. 本题考点:平面图形面积的计算. 考点点评:此题考查定积分求平面图...
∴直线x+y-2=0与两条坐标轴围成的三角形面积S= 1 2×2×2=2.故答案为:2. 令x=0,解得y=2;令y=0,解得x=2.即可得到:直线x+y-2=0与两条坐标轴围成的三角形面积S= 1 2×2×2. 本题考点:三角形的面积公式. 考点点评:本题考查了直线与坐标轴的交点坐标和三角形的面积计算公式,属于基础题. ...