1)Faster R-CNN:是一种基于深度神经网络的目标检测模型,它通过在区域提议网络(Region Proposal Network, RPN)中引入锚点来提高检测速度,同时采用了RoI Pooling层来实现不同大小的目标检测。 2)YOLO(You Only Look Once):是一种基于单阶段目标检测算法的模型,它将目标检测任务转化为一个回归问题,通过卷积神经网络预...
图像分割(Image Segmentation):图像分割要求人工智能在医学影像中准确地勾勒出病变区域的边界,性能指标包括分割的准确度、边缘误差、完整性、运算速度等。 目标检测(Object Detection):目标检测旨在识别影像中特定的病变位置,并对其进行定位。这一任务的性能指标包括定位精确度、召回率、平均精度以及检测的置信度阈值等。 ...
🔍 医学图像分割:将医学图像中的特定区域或结构进行精确分割,如CT、MRI等。 📊 图像分类:对医学图像进行分类,如病理检测、病灶检测等。 🎯 目标检测:在医学图像中定位和识别特定目标,如肿瘤、病变等。 🛠️ 多模态医学图像融合:将不同模态的医学图像进行融合,提供更全面的信息。 🔄 医学图像预处理:对医...
例如在目标检测的一些经典论文中,常常会使用COCO数据集作为测试数据集,其中使用到的一个指标有AP[.50:.05:.95],它表示的意思是IOU阈值是动态变换的,它将设置为0.5,0.55,0.60,0.65,一直到0.95,一共有10个IOU阈值,然后每个IOU阈值都会对应一个PR曲线图,每个PR曲线图都对应一个AP数值,这样计算也就是会有十个AP...
目标检测,也叫目标提取,是一种基于目标几何和统计特征的图像分割。它将目标的分割和识别合二为一,其准确性和实时性是整个系统的一项重要能力。 作为计算机视觉的一个重要分支,目标检测的任务是在一幅图像或视频中找到目标类别以及目标位置。与图像分类不同,目标检测侧重于物体搜索,被检测目标必须有固定的形状和轮廓;...
ImageNet挑战或大规模视觉识别挑战(LSVRC)都是一个年度竞赛,其中具有诸如目标分类,目标检测和目 标定位等各种子挑战。LSVRC,特别是目标分类的挑战,自从2012年,Alex Krizhevsky实施了著名的AlexNet,将图像的错误率降低到 15.7%(在当时从未实现),便开始获得了很多关注。而最新的结果显示,微软ResNet的错误率为3.57%,...
1、Image Classification(图像分类) 图像分类:就是对图像判断出所属的分类,比如在学习分类中数据集有人(person)、羊(sheep)、狗(dog)和猫(cat)四种,图像分类要求给定一个图片输出图片里含有哪些分类,比如下图的例子是含有person、sheep和dog三种。 2、Object detection(目标检测)目标检测:简单来说就是图片里面有什...
图像分割和图像分类都是计算机视觉领域中的重要任务,但它们与目标检测有着显著的不同之处。本文将详细介绍这些区别。 1.图像分割和目标检测区别 图像分割是将一张图像分成若干个子区域,使得每个子区域内像素具有相似的属性。而目标检测则是在一张图像中定位并标记出物体的位置和类别。因此,图像分割只是分割图像,没有考...
🌟 医学图像处理,图像分割,图像分类,目标检测,SCI指导 🌟 🏥 医学图像(CT, DR, MRI)格式转换 🏥 🔄 将医院内拷贝的DICOM(.dcm文件)无损转换为.JPG格式 🌐 薄层图像三维重建,断层section分析 📚 SCI指导(现有三篇三四区SCI,欢迎交流)
作者在各种视觉任务上评估CAS-ViT,包括图像分类、目标检测、实例分割和语义分割。 作者在GPU、ONNX和iPhone上进行的实验表明,与其他最先进的 Backbone 相比,CAS-ViT在竞争性能上取得了良好的效果,使其成为有效移动视觉应用程序的可行选择...