1 K-Means算法引入基于 相似性度量,将相近的样本归为同一个子集,使得相同子集中各元素间差异性最小,而不同子集间的元素差异性最大[1],这就是(空间)聚类算法的本质。而K-Means正是这样一种算法的代表。上个世…
K-means算法中的k表示的是聚类为k个簇,means代表取每一个聚类中数据值的均值作为该簇的中心,或者称为质心,即用每一个的类的质心对该簇进行描述。聚类和分类最大的不同在于,分类的目标是事先已知的,而聚类则不一样,聚类事先不知道目标变量是什么,类别没有像分类那样被预先定义出来,所以,聚类有时也叫无监督学...
2.使用KMeans算法进行聚类接下来,我们使用KMeans算法对数据进行聚类。我们需要指定要聚类的簇数(这里设置为2),然后调用fit方法对数据进行训练。1python复制代码2# 使用KMeans算法进行聚类3 kmeans = KMeans(n_clusters=2, random_state=42)4 kmeans.fit(data)56# 获取聚类结果7 labels = kmeans....
K-means聚类算法步骤 在python下使用随机生成的测试数据进行kmeans算法实验 调用机器学习库sklearn里现成的函数进行kmeans算法实验 有同学留言指出上面的实验都是使用随机生成的测试数据进行的,希望我们基于一些有实际意义的社交媒体数据进行类似的算法实验,这样他们在论文写作时可以更好的参考借鉴。 我们认为这个建议很好,...
定义:KMeans算法需要预先设定簇的数量(K值),但实际应用中这个数量往往是未知的。 例子:一个餐厅可能希望根据顾客的菜品选择、消费金额和就餐时间来进行聚类,但事先很难确定应该分成几个集群。错误的K值选择可能导致不准确或无意义的聚类结果。 对初始点敏感 ...
make_blobs:用于生成聚类算法的测试数据集。 KMeans:K-Means聚类算法。 silhouette_score:评估聚类效果的轮廓系数。 matplotlib.pyplot:用于绘制数据和聚类结果的图形。 2. 生成示例数据 X,_=make_blobs(n_samples=300,centers=4,n_features=2,cluster_std=0.60,random_state=0) ...
K-means算法是一种非常常见的无监督学习算法,以下是一些应用场景: 客户细分:在市场营销中,可对客户进行细分,将相似的客户分为同一类,以便进行更有效的营销策略制定。 图像分割:在计算机视觉中,可用于图像分割,将图像中的像素分为几个不同的区域。 异常检测:可用于异常检测,通过将数据点聚类,找出那些与大多数数据点...
K-Means聚类是一种常用的无监督学习算法,用于将数据集分成K个簇(cluster),使得簇内的数据点彼此之间...
保险欺诈检测:在保险行业,K-Means算法可以用于保险欺诈检测。通过利用以往欺诈性索赔的历史数据,并根据其与欺诈性模式聚类的相似性来识别新的欺诈行为,有助于保险公司及时发现和防止欺诈行为。乘车数据分析:在交通领域,K-Means算法可以用于乘车数据分析。通过对公开的乘车信息数据集进行聚类分析,可以识别出交通模式、...
K-means算法优点在于简单、快速,但其缺点也很明显。 (1)使用K-means算法就必须要求事前给出k值,也就是预先确定好想要把数据集分成几类。 (2)不同的初始化点,最后通过K-means得出的聚类结果也有可能产生差异。 (3)K-means对于“噪声点”是极其敏感的,可能极少的“噪声点”都会对最后的结果产生很大的影响。