1 K-Means算法引入 基于相似性度量,将相近的样本归为同一个子集,使得相同子集中各元素间差异性最小,而不同子集间的元素差异性最大[1],这就是(空间)聚类算法的本质。而K-Means正是这样一种算法的代表。 图1 二维空间聚类的例子 [1] 上个世纪50/60年代,K-Means聚类算法分别在几个不同的科学研究领域被独立...
通过理解聚类的目的和KMeans算法的工作原理,我们能更好地把握该算法在复杂数据分析任务中的应用。 二、KMeans算法原理 在深入探讨KMeans聚类算法之前,了解其工作原理是至关重要的。本节将介绍KMeans算法的核心组成部分,包括数据集和特征空间、距离度量以及算法的主要步骤。 数据集和特征空间 定义:在KMeans算法中,数据...
# 机器学习:k-means聚类y_pred=KMeans(n_clusters=4,random_state=22,).fit_predict(X)# 此处k值为4,即分为两类# 可以尝试将n_clusters设置不同的值,查看分类效果plt.scatter(X[:,0],X[:,1],c=y_pred)plt.show() 三、 K-Means算法小结 优点:(简单快速适合常规数据集) 原理简单(靠近中心点)...
2.使用KMeans算法进行聚类接下来,我们使用KMeans算法对数据进行聚类。我们需要指定要聚类的簇数(这里设置为2),然后调用fit方法对数据进行训练。1python复制代码2# 使用KMeans算法进行聚类3 kmeans = KMeans(n_clusters=2, random_state=42)4 kmeans.fit(data)56# 获取聚类结果7 labels = kmeans....
(1)使用K-means算法就必须要求事前给出k值,也就是预先确定好想要把数据集分成几类。 (2)不同的初始化点,最后通过K-means得出的聚类结果也有可能产生差异。 (3)K-means对于“噪声点”是极其敏感的,可能极少的“噪声点”都会对最后的结果产生很大的影响。
一 算法原理 K-Means是一种迭代聚类算法,其目标是将n个点划分为K个聚类,每个点属于最近的聚类中心的聚类。。K-means算法实现步骤如下: 输入:数据集,聚类个数输出:聚类结果类簇 初始化:随机初始化个样本作为聚类中心; 分配:计算数据集中所有样本到各个聚类中心的距离,并...
K-means聚类算法采用的是将N*P的矩阵X划分为K个类,使得类内对象之间的距离最大,而类之间的距离最小。 使用方法: Idx=Kmeans(X,K) [Idx,C]=Kmeans(X,K) [Idx,C,sumD]=Kmeans(X,K) [Idx,C,sumD,D]=Kmeans(X,K) […]=Kmeans(…,’Param1’,Val1,’Param2’,Val2,…) ...
make_blobs:用于生成聚类算法的测试数据集。 KMeans:K-Means聚类算法。 silhouette_score:评估聚类效果的轮廓系数。 matplotlib.pyplot:用于绘制数据和聚类结果的图形。 2. 生成示例数据 X,_=make_blobs(n_samples=300,centers=4,n_features=2,cluster_std=0.60,random_state=0) ...
4 k-medoids(k-中心聚类算法) K-medoids和K-means是有区别的,不一样的地方在于中心点的选取 K-means中,将中心点取为当前cluster中所有数据点的平均值,对异常点很敏感! K-medoids中,将从当前cluster 中选取到其他所有(当前cluster中的)点的距离之和最小的点作为中心点。
本文采用R软件对数据进行K-means聚类和层次聚类分析。R语言是统计领域广泛使用的,诞生于1980年左右的S语言的一个分支。 结果 将该数据集分为了三类。 plot(data[,3:4], fit$clust K-means算法将该样本集分为4类,其中最多的为cluster-2,有39886条记录,其次是cluster-3,有4561条记录,再者是cluster-1,为3514...