K-means算法中的k表示的是聚类为k个簇,means代表取每一个聚类中数据值的均值作为该簇的中心,或者称为质心,即用每一个的类的质心对该簇进行描述。聚类和分类最大的不同在于,分类的目标是事先已知的,而聚类则不一样,聚类事先不知道目标变量是什么,类别没有像分类那样被预先定义出来,所以,聚类有时也叫无监督学...
上个世纪50/60年代,K-Means聚类算法分别在几个不同的科学研究领域被独立地提出,直到1967年,教授James MacQueen在他的论文《用于多变量观测分类和分析的一些方法(Some Methods for classification and Analysis of Multivariate Observations)》中首次提出“K-Means”这一术语,至此该算法真正开始被推广和应用,并发展出大量...
通过这个结构化的解析,我们能更好地理解KMeans聚类算法是如何工作的,以及如何在不同的应用场景中调整算法参数。 三、KMeans案例实战 理解KMeans算法的理论基础是非常重要的,但更重要的是能够应用这些理论到实际问题中。在本节中,我们将通过一个具体的案例来演示如何使用Python和PyTorch实现KMeans算法。 案例背景:客户...
K-means(k-均值,也记为kmeans)是聚类算法中的一种,由于其原理简单,可解释强,实现方便,收敛速度快,在数据挖掘、数据分析、异常检测、模式识别、金融风控、数据科学、智能营销和数据运营等领域有着广泛的应用。 本文尝试梳理K-means聚类算法的基础知识体系: 首先,引出K-means的基础概念,介绍聚类算法的分类和基于划分...
K-Means聚类是一种无监督学习算法,用于将数据点分组成k个簇。该算法将数据点分配到距离它们最近的簇中,其中距离通常是欧氏距离。 然后,通过计算每个簇的质心(簇中所有数据点的平均值),来确定每个簇的中心点。这些步骤反复进行,直到质心不再改变或达到最大迭代次数为止。让我们直接进入主题!上代码!
在k-means聚类算法中,我们需要预先设定聚类的数量,即参数k的值。在本例中,我们假定存在3个聚类集群,因此设定k=3,意味着这19个数据点将被划分为3个不同的集群。在k-means聚类算法中,我们首先需要随机选取k个初始点,这些点将作为我们建立聚类集群的起始中心。在本例中,我们随机选取了3个点,作为我们即将...
一 算法原理 K-Means是一种迭代聚类算法,其目标是将n个点划分为K个聚类,每个点属于最近的聚类中心的聚类。。K-means算法实现步骤如下: 输入:数据集,聚类个数输出:聚类结果类簇 初始化:随机初始化个样本作为聚类中心; 分配:计算数据集中所有样本到各个聚类中心的距离,并...
一、K-means聚类步骤: (1)选择k个初始聚类中心 (2)计算每个对象与这k个中心各自的距离,按照最小距离原则分配到最邻近聚类 (3)使用每个聚类中的样本均值作为新的聚类中心 (4)重复步骤(2)和(3)直到聚类中心不再变化 (5)结束,得到k个聚类 二、评价聚类的指标: ...
K-Means聚类算法是一种基于距离度量的无监督学习算法,其核心思想是将数据集划分为K个不同的类别,使得同一类别内的数据点之间距离最小,不同类别之间距离最大。该算法采用迭代优化的方法来不断更新聚类中心点,直到满足停止条件。K-Means聚类算法的基本步骤如下:随机选择K个中心点作为初始聚类中心。将所有数据点分配...