生成式模型与判别式模型是机器学习中的两种核心建模方法,它们在建模目的、工作原理和适用场景上有着明显的差异。 首先,生成式模型主要关注数据的生成过程。它通过学习数据的联合概率分布P(X,Y),来生成新的数据样本。这种模型模拟数据的生成过程,可以生成与训练数据相似的样本,是AIGC(人工智能生成内容)的基础。生成式...
应用场景不同:生成式模型通常用于需要模拟数据生成过程的任务,如语言模型、图像生成等;而判别式模型通常用于需要直接预测样本标签的任务,如分类、回归等。 联系:生成式模型和判别式模型都是概率建模的方法,它们之间存在一定的联系。例如,判别式模型可以通过贝叶斯公式得到生成式模型,从而将分类问题转化为概率估计问题。 选...
生成式模型和辨别式模型的主要区别在于它们学习的目标不同。生成式模型学习输入数据的分布,可以生成新的数据样本。辨别式模型学习输入数据和输出标签之间的关系,可以预测新的标签。生成式模型:生成模型给了我们更多的信息,因为它们同时学习输入分布和类概率。可以从学习的输入分布中生成新的样本。并且可以处理缺失的数据...
产生式模型(Generative Model)与判别式模型(Discrimitive Model)是分类器常遇到的概念,它们的区别在于: 对于输入x,类别标签y: 产生式模型估计它们的联合概率分布P(x,y) 判别式模型估计条件概率分布P(y|x) 产生式模型可以根据贝叶斯公式得到判别式模型,但反过来不行。 判别式模型常见的主要有: Logistic Regression SV...
总之,判别式模型和生成式模型是机器学习中的两种经典类型,其在模型目标,复杂度,训练数据和应用场景上都有明显的区别。 生成式模型用于生成新的数据和学习数据的联合分布,而判别式模型则侧重于分类和回归任务,通过学习特征与标签之间的条件概率分布。 在应用方面,应根据具体的任务和需求,选择合适的模型类型是最好的应用...
在机器学习中,对于有监督学习可以将其分为两类模型:判别式模型和生成式模型。简单地说,判别式模型是针对条件分布建模,而生成式模型则针对联合分布进行建模。 1. 基本概念 补充: 本材料参考Andrew Ng大神的机器学习课程 http://cs229.stanford.edu 在上一篇有监督学习回归模型中,我们利用训练集直接对条件概率p(y|...
搜标题 搜题干 搜选项 0/ 200字 搜索 问答题 答案: 你可能感兴趣的试题 问答题 【简答题】写出逻辑回归算法中的损失函数。 答案: 多项选择题 异常值检测方法有:() A.方差法 B.箱型图 C.聚类 D.孤立森林 E.RCF
生成式模型(Generative Model)与判别式模型(Discrimitive Model)是分类器常遇到的概念,它们的区别在于: 对于输入x,类别标签y: 生成式模型估计它们的联合概率分布P(x,y) 判别式模型估计条件概率分布P(y|x) 生成式模型可以根据贝叶斯公式得到判别式模型,但反过来不行。
判别式模型:用于分类,回归,序列标注等任务 总之,判别式模型和生成式模型是机器学习中的两种经典类型,其在模型目标,复杂度,训练数据和应用场景上都有明显的区别。 生成式模型用于生成新的数据和学习数据的联合分布,而判别式模型则侧重于分类和回归任务,通过学习特征与标签之间的条件概率分布。
判别式模型:用于分类,回归,序列标注等任务 总之,判别式模型和生成式模型是机器学习中的两种经典类型,其在模型目标,复杂度,训练数据和应用场景上都有明显的区别。 生成式模型用于生成新的数据和学习数据的联合分布,而判别式模型则侧重于分类和回归任务,通过学习特征与标签之间的条件概率分布。