浮点数标准,也称IEEE二进制浮点数算术标准(IEEE 754),是20世纪80年代以来最广泛使用的浮点数运算标准,为许多CPU与浮点运算器所采用。这个标准定义了表示浮点数的格式(包括负零-0)与反常值(denormal number)),一些特殊数值(无穷(Inf)与非数值(NaN)),以及这些数值的“浮点数运算符”;它也指明了四种...
浮点数是表示小数的一种方法.所谓浮点就是小数点的位置不固定,与此相反有定点数,即小数点的位置固定.整数可以看做是一种特殊的定点数,即小数点在末尾.8086/8088中没有浮点数处理指令,不过从486起,CPU内置了浮点数处理器,可以执行浮点运算.一般的浮点数有点象科学计数法,包括符号位、指数部分和尾数部分.浮点数是...
保存这些浮点数当然必须有特定的格式, C/C++中的浮点数类型 float 和 double 采纳了IEEE 754标准中所定义的单精度 32 位 浮点数和双精度 64 位浮点数的格式。 在 IEEE 标准中,浮点数是将特定长度的连续字节 的所有二进制位分割为特定宽度的符号域,指数域和尾数域三个域, 其中保存的值分别用 于表示给定二进...
IEEE-754是IEEE制定的二进制浮点数算术标准(IEEE即电气与电子工程师协会,这个协会制定了很多计算机领域的标准),也计算机中表示浮点数的行业标准,于1985年正式采用,2008年和2019年又分别进行了完善和修订。 题外话 我司首席科学家金耀初教授,就是现任IEEE计算智能协会主席。计算智能协会是IEEE下设的39个专业学会之一,目前...
(1) 若 X 浮点数的存储形式为 41360000H,求 X 的真值。 (2) 若 Y=-135.625,求 Y 的浮点数表示。 浮点数格式化表示及方法(是针对尾数的) /*为了充分利用尾数的二进制数位来表示更多的有效数字,通常采用规格化形式表示浮 点数,即将尾数的绝对值限定在某个范围之内*/ ...
将较小指数的那个浮点数的尾数右移,并相应地增加它的指数,直到两个浮点数的指数相同。 右移操作可能会导致尾数的精度损失,但这是必须的以便能够对两个数进行相加或相减。 例如,如果两个浮点数分别为 (2.5 \times 10^3) 和 (3.75 \times 10^2),需要将 (3.75 \times 10^2) 转换为 (0.375 \times 10^3...
4)判断溢出:浮点数乘除运算结果的尾数不可能发生溢出,而浮点数运算结果的溢出则根据运算结果中浮点数的阶码来确定,溢出的判定和处理方法与浮点加减运算完全相同。 例子像下面这样: - 例子:设两浮点数x=2-001×(-0.100010),y=2-100×(0.010110),求x*y[x]~浮~=11111,1.011110 [y]~浮~=11100,0.010110 ...
31、数点后4位有效数字的舍入操作值。,解:执行舍入操作后,其结果值分别为 x1补11.0110 (不舍不入) x2补11.0110 (舍) x3补11.0110 (舍) x4补11.1000 (入),例:设有浮点数=25 0.0110011, = 23 (-0.1110010), 阶码用4位移码表示, 尾数 (含符号位)用8位补码表示。求浮。要求用补码完成尾数乘法运算, ...
2浮点数的乘除法(1)阶码运算:阶码求和(乘法)或阶码求差(除法)即Ex+Ey移二Ex移 + Ey补Ex-Ey移二Ex移 +-Ey补(2)浮点数的尾数处理:浮点数中尾数乘除法运算结果要进行舍入处理例题:X=0 .0110011*211, Y=0. 1101101*2-10 求 X*Y解:X浮:0 1 010 *Y浮:0 0 110 1101101(1)阶码相加Ex+Ey移二Ex...