K-means和FCM模糊聚类算法的一个显著差别在于,K-means聚类是硬聚类(意思是一个样本要么100%属于A,要么100%属于B);而FCM模糊聚类算法则是软聚类(意思是一个样本有一定几率属于A,有一定几率属于B,但总概率为1)。 FCM(Fuzzy c-means)算法的基本过程: 假设需要将数据集中的数据分为C种类型,那么就存在C个聚类中...
一、FCM算法原理 FCM算法是fuzzy c-means 的简称,是一种基于目标函数的模糊聚类方法。 假设有个数据集X,要划分为C个类,那么对应就有C个类中心,每个样本j属于某一类的隶属度为 μij,FCM算法的目标函数集约束条件如下(目标函数为样本到各类中心点的误差平方和,FCM算法中每个样本属于某个类有个隶属度,公式中要体...
深入解析,FCM,即fuzzy c-means,是通过优化目标函数实现的模糊聚类方法。以数据集X和C个类别为例,算法的目标是减小样本到各类中心点误差平方和,通过拉格朗日乘数法找到使误差最小化的隶属度。最终,通过迭代求解,得到样本对每个类别的隶属度,直至收敛或达到预设步数,每个样本便有了明确的模糊分类。实...
首先声明FCM模糊聚类算法的最终目的是聚类。说到聚类算法,就不得不提一下许多教材上的K-means聚类算法。K-means聚类算法的其实很简单,对于一个空间的数据,算法需要一个预定的K值,即需要把空间的数据分为K类,然后随机初始化K个聚类中心点,通过不断的优化K个聚类中心点的位置使得目标距离函数的值最小(这里不细讲,...
K-means和FCM模糊聚类算法的一个显著差别在于,K-means聚类是硬聚类(意思是一个样本要么100%属于A,要么100%属于B);而FCM模糊聚类算法则是软聚类(意思是一个样本有一定几率属于A,有一定几率属于B,但总概率为1)。 FCM(Fuzzy c-means)算法的基本过程: 假设需要将数据集中的数据分为C种类型,那么就存在C个聚类中...