本文旨在采用最朴实的方式推导柱坐标系下的NS方程。 (x,y,z)⇒(r,θ,z) 笛卡尔坐标系中,守恒形式的NS方程(不需要推导过程的话,直接拉到最下面看结果): 连续性方程: Eqn1 ∂ρ∂t+∇⋅(ρU)=0 上式中时间项与坐标系无关,因此只需要对对流项进行转换: Eqn2 ∇⋅(ρU)=∂ρUx∂...
Derivation of 3D Euler and Navier-Stokes Equations in Cylindrical Coordinates Dingxi Wang School of Engineering, Durham University Contents 1. Derivation of 3D Euler Equation in Cylindrical coordinates 2. Derivation of Euler Equation in Cylindrical coordinates moving at in tangential direction 3. De...
柱坐标系和球坐标系下NS方程的直接推导.pdf,Derivation of 3D Euler and Navier-Stokes Equations in Cylindrical Coordinates Dingxi Wang School of Engineering, Durham University Contents 1. Derivation of 3D Euler Equation in Cylindrical coordinates 2. Derivati
【精品】柱坐标系和球坐标系下NS方程的直接推导 下载积分: 655 内容提示: Derivation of 3D Euler and Navier-Stokes Equations in Cylindrical Coordinates Dingxi Wang School of Engineering, Durham University Contents 1. Derivation of 3D Euler Equation in Cylindrical coordinates 2. Derivation of Euler Equat...
我们知道描述流体运动层流的流体力学基本方程组是封闭的而描述湍流运动的方程组由于采用了某种平均时间平均或网格平均等而不封闭须对方程组中出现的新未知量采用模型而使其封闭这就是cfd中的湍流模型 Derivation of 3D Euler and Navier-Stokes Equations in Cylindrical Coordinates Dingxi Wang SchoolofEngineering,Durham...
Derivationof3DEulerandNavier,StokesEquationsinCylindricalCoordinatesDing,iWangSchoolofEngineering,DurhamUniversityConten
柱坐标系和球坐标系下NS方程的直接推导 下载积分: 50 内容提示: Derivation of 3D Euler and Navier-Stokes Equations in Cylindrical Coordinates Dingxi Wang School of Engineering, Durham University Contents 1. Derivation of 3D Euler Equation in Cylindrical coordinates 2. Derivation of Euler Equation in ...
柱坐标系和球坐标系下NS方程的直接推导.docx,Derivation of 3D Euler and Navier-Stokes Equations in Cylindrical Coordinates Contents 1. Derivation of 3D Euler Equation in Cylindrical coordinates 2. Derivation of Euler Equation in Cylindrical coordinates movi
DNS是直接数值求解N-S方程组,不需要任何湍流模型,是目前最精确的方法。其优点在于可以得出流场内任何物理量(如速度和压力)的时间和空间演变过程,旋涡的运动学和动力学问题等。由于直接求解N-S方程,其应用也受到诸多方面的限制。第一:计算域形状比较 19、简单,边界条件比较单一;第二:计算量大。影响计算量的因素有...
柱坐标系和球坐标系下NS方程的直接推导.doc,Derivation of 3D Euler and Navier-Stokes Equations in Cylindrical Coordinates Dingxi Wang School of Engineering, Durham Contents 1. Derivation of 3D Euler Equation in Cylindrical coordinates 2. Derivation of Euler