其正确性在于,求最大似然估计量θ^可以视为求最大值问题,且一般情形下关于可微分,且和函数单调性相同p(x;θ)关于θ可微分,且L(θ)和lnL(θ)函数单调性相同,它们在同一θ处取到极值,因此θ的最大似然估计θ^可以从方程dL(θ)dθ=0求出,也可以从方程dlnL(θ)dθ=0求出,结果一致。取后,...
顾名思义,最大似然估计是通过最大化似然函数来计算的。(从技术上讲,这不是找到它的唯一方法,但这是最直接的方法)。 似然函数是衡量样本成为观察到数据的概率。 如果数据集有1-n个独立同分布的(iid)随机变量,X₁至Xₙ,与观察到的数据 x₁ 到 xₙ 相关,我们就有似然函数的数学表达式: 这可以很好地...
在统计学中,最大似然估计(maximum likelihood estimation,MLE),也称极大似然估计,是用来估计一个概率模型的参数的一种方法。最大似然估计在统计学和机器学习中具有重要的价值,常用于根据观测数据推断最可能的模型参数值。 本文基于两篇文章整合而成, http...
最大似然估计(Maximum Likelihood Estimation)是一种可以生成拟合数据的任何分布的参数的最可能估计的技术。它是一种解决建模和统计中常见问题的方法——将概率分布拟合到数据集。 例如,假设数据来自泊松(λ)分布,在数据分析时需要知道λ参数来理解数据。这时就可以通过计算MLE找...
最大似然估计 是一种统计方法 ,它用来求一个样本集的相关概率密度函数的参数.这个方法最早是遗传学家以及统计学家罗纳德·费雪 爵士在1912年至1922年间开始使用的.“似然”是对likelihood 的一种较为贴近文言文的翻译,“似然”用现代的中文来说即“可能性”.故而,若称之为“最大可能性估计”则更加通俗易懂. ...
极大似然估计,我们也把它叫做最大似然估计(Maximum Likelihood Estimation),英文简称MLE。它是机器学习中常用的一种参数估计方法。它提供了一种给定观测数据来评估模型参数的方法。也就是模型已知,参数未定。 在我们正式讲解极大似然估计之前,我们先简单回顾以下两个概念: ...
在统计学中,最大似然估计(maximum likelihood estimation,MLE),也称极大似然估计,是用来估计一个概率模型的参数的一种方法。最大似然估计在统计学和机器学习中具有重要的价值,常用于根据观测数据推断最可能的模型参数值。这篇文章将详细介绍最大似然估计。
1. 最大似然估记原理 最大似然估计法是基于最大似然估计原理的一种参数估计方法。最大似然估计假设观测数据服从某个已知的概率分布,并通过寻找使得观测数据出现的概率最大的参数值来进行参数估计。具体而言,最大似然比法通过以下步骤进行:>假设观测数据的概率分布属于一个参数化的概率模型。>利用观测数据代入概率...
最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们。下文将详细说明MLE和MAP的思路与区别。 但别急,我们先从概率和统计的区别讲起。