在今天分享中,研究者提出了一种改进的特征金字塔模型,命名为AF-FPN,它利用自适应注意力模块(AAM)和特征增强模块(FEM)来减少特征图生成过程中的信息丢失并增强表示能力的特征金字塔。将YOLOv5中原有的特征金字塔网络替换为AF-FPN,在保证实时检测的前提下提高了YOLOv5网络对多尺度目标的检测性能。此外,提出了一种新的...
本文引入AF-FPN和自动学习数据增强,解决模型大小与识别精度不兼容问题,进一步提高模型的识别性能。 用AF-FPN代替原来的FPN结构,提高了多尺度目标识别能力,在识别速度和精度之间进行了有效的权衡。 1、AF-FPN AF-FPN在传统特征金字塔网络的基础上,增加了自适应注意力模块AAM和特征增强模块FEM。整体结构如下: 输入图像通...
在今天分享中,研究者提出了一种改进的特征金字塔模型,命名为AF-FPN,它利用自适应注意力模块(AAM)和特征增强模块(FEM)来减少特征图生成过程中的信息丢失并增强表示能力的特征金字塔。将YOLOv5中原有的特征金字塔网络替换为AF-FPN,在保证实时检测的前提下提高了YOLOv5网络对多尺度目标的检测性能。此外,提出了一种新的...
AF-FPN structure AF-FPN在传统特征金字塔网络的基础上,增加了自适应注意力模块(AAM)和特征增强模块(FEM)。前一部分由于减少了特征通道,减少了在高层特征图中上下文信息的丢失;后一部分增强了特征金字塔的表示并加快了推理速度,同时实现了最先进的性能。AF-FPN的结构如下图所示。 AAM的具体结构如下图所示,作为自适...
将YOLOv5中原有的特征金字塔网络替换为AF-FPN,在保证实时检测的前提下提高了YOLOv5网络对多尺度目标的检测性能。此外,提出了一种新的自动学习数据增强方法来丰富数据集并提高模型的鲁棒性,使其更适合实际场景。在Tsinghua-Tencent 100K (TT100K) 数据集上的大量实验结果证明了与几种最先进的方法相比所提出的方法的...
改进的YOLO,AF-FPN替换金字塔模块,提升目标检测精度#人工智能 #ai #论文 #目标检测算法 #yolov5 - 学算法的Amy于20230401发布在抖音,已经收获了13.5万个喜欢,来抖音,记录美好生活!
简介:YOLOv8改进 | 2023检测头篇 | 利用AFPN增加小目标检测层(让小目标无所遁形) 一、本文介绍 本文给大家带来的改进机制是利用今年新推出的AFPN(渐近特征金字塔网络)来优化检测头,AFPN的核心思想是通过引入一种渐近的特征融合策略,将底层、高层和顶层的特征逐渐整合到目标检测过程中。这种渐近融合方式有助于减小...
简介:YOLO目标检测专栏介绍了YOLO的有效改进和实战案例,包括AFPN——一种解决特征金字塔网络信息丢失问题的新方法。AFPN通过非相邻层直接融合和自适应空间融合处理多尺度特征,提高检测性能。此外,还展示了YOLOv8中引入的MPDIoU和ASFF模块的代码实现。详情可参考提供的专栏链接。
AFPN(渐进式特征金字塔网络)是在特征金字塔和特征融合模块基础上的进一步创新和优化。 AFPN不仅采用了特征金字塔的多尺度特征表示理念,还引入了高效和创新的渐进式特征融合策略,特别是非邻近层次的直接特征融合和自适应空间融合操作。 自适应空间融合操作解决了特征融合过程中的信息冲突问题 ...
Mao等人利用反转残差结构对卷积层进行了改进,并添加了三个空间金字塔池块(SPP-block)来解决多尺度车辆目标检测的问题凹。上述算法的改进提高了YOLOv3算法的检测精度,在一定程度上却也增加了算法的计算量。为保证算法对车辆目标实时检测的同时进一步提高检测准确率,文章对YOLOv3算法的特征提取网 收稿日期:2021-06-21...