拉氏变换(Laplace transform)是应用数学中常用的一种积分变换,其符号为L[f(t)]。拉氏变换是一个线性变换,可将一个有实数变数的函数转换为一个变数为复数s的函数: ∫0∞F(s)=f(t)e−stdt 拉氏变换在大部份的应用中都是对射的,最常见的f(t)和F(s) 组合常印制成表,方便查阅。拉氏变换和傅立叶变换...
记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为ft=L-1[F(s)]。函数变换对和运算变换性质 利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。表1和表2分别列出了最常用的一些函数变换对和运算变换性质。