三维 (3D) 点云配准对于许多3D LIDAR应用(例如校准、定位、测绘和环境识别)来说是一项至关重要的任务。3D LIDAR有两种流行的点云配准方法:广义迭代最近点 (GICP) 和正态分布变换 (NDT)。GICP以分布到分布的比较方式扩展了经典ICP算法[4],以实现准确配准,而NDT利用体素化方法来避免昂贵的最近邻搜索并提高处...
三维(3D) 点云配准对于许多3D LIDAR应用(例如校准、定位、测绘和环境识别)来说是一项至关重要的任务。3D LIDAR有两种流行的点云配准方法:广义迭代最近点 (GICP) 和正态分布变换 (NDT)。 GICP以分布到分布的比较方式扩展了经典ICP算法[4],以实现准确配准,而NDT利用体素化方法来避免昂贵的最近邻搜索并提高处理速度。
与从点位置计算体素分布的正态分布变换(NDT)不同,我们通过聚集体素中每个点的分布来估计体素分布。体素化方法使算法能够高效地并行处理优化问题,所提出的算法在CPU上可以运行30hz,在GPU上可以运行120hz。通过在模拟环境和真实环境中的评估,我们证实了该算法的精度可以与GICP相媲美,但比现有的方法快得多。结合类ICP和...
三维(3D) 点云配准对于许多3D LIDAR应用(例如校准、定位、测绘和环境识别)来说是一项至关重要的任务。3D LIDAR有两种流行的点云配准方法:广义迭代最近点 (GICP) 和正态分布变换 (NDT)。 GICP以分布到分布的比较方式扩展了经典ICP算法[4],以实现准确配准,而NDT利用体素化方法来避免昂贵的最近邻搜索并提高处理速度。
代码:https://github.com/SMRT-AIST/fast_gicp.git ●论文摘要 本文提出了一种体素化的广义迭代最近点(VGICP)算法,用于快速、准确地进行三维点云配准。该方法扩展了广义迭代最近点(GICP)方法的体素化,避免了代价昂贵的最近邻搜索,同时保持了算法的精度。与从点位置计算体素分布的正态分布变换(NDT)不同,我们通过...
体素化GICP算法 为了推导体素化GICP算法,我们首先扩展公式(1),以便计算ai与其相邻点之间的距离,如下所示 这个方程可以解释为平滑目标点分布。然后与式(3)类似,di的分布表示为 估计等式(7)的对数的最大似然变换T 为了有效地计算上述方程,将其修改为 其中Ni是相邻点的数目。式(11)表明,可以有效地计算目标函数的方...
三维(3D) 点云配准对于许多3D LIDAR应用(例如校准、定位、测绘和环境识别)来说是一项至关重要的任务。3D LIDAR有两种流行的点云配准方法:广义迭代最近点 (GICP) 和正态分布变换 (NDT)。 GICP以分布到分布的比较方式扩展了经典ICP算法[4],以实现准确配准,而NDT利用体素化方法来避免昂贵的最近邻搜索并提高处理速...
三维(3D) 点云配准对于许多3D LIDAR应用(例如校准、定位、测绘和环境识别)来说是一项至关重要的任务。3D LIDAR有两种流行的点云配准方法:广义迭代最近点 (GICP) 和正态分布变换 (NDT)。 GICP以分布到分布的比较方式扩展了经典ICP算法[4],以实现准确配准,而NDT利用体素化方法来避免昂贵的最近邻搜索并提高处理速...