文章目录图像分类(image classification)目标检测(object detection)语义分割(semanticsegmentation)实例分割(instance... detection) 不仅要识别图像中目标的类别,还要框选出位置。如下图所示语义分割(semanticsegmentation) 相比目标检测更加精细,需要将目标区域(mask)标注出来。如下图 ...
1)Faster R-CNN:是一种基于深度神经网络的目标检测模型,它通过在区域提议网络(Region Proposal Network, RPN)中引入锚点来提高检测速度,同时采用了RoI Pooling层来实现不同大小的目标检测。 2)YOLO(You Only Look Once):是一种基于单阶段目标检测算法的模型,它将目标检测任务转化为一个回归问题,通过卷积神经网络预...
图像分类,目标检测,语义分割,实例分割,全景分割联系与区别 一、图像分类识别图像中存在的内容,如下图,有人(person)、树(tree)、草地(grass)、天空(sky),只知道有没有这一类东西就行。 二、目标检测识别图像中存在的内容和检测其位置,如下图,以识别和检测人(person)为例,可以分开不同的人并给出位置,但不能给...
实例分割(上图右)其实就是目标检测和语义分割的结合。相对目标检测的边界框,实例分割可精确到物体的边缘;相对语义分割,实例分割需要标注出图上同一物体的不同个体(羊1,羊2,羊3…) 目前常用的实例分割算法是Mask R-CNN。 Mask R-CNN 通过向 Faster R-CNN 添加一个分支来进行像素级分割,该分支输出一个二进制掩...
鉴于CNN 在图像分类和目标检测方面的优势,它已成为计算机视觉和视觉跟踪的主流深度模型。 一般来说,大规模的卷积神经网络既可以作为分类器和跟踪器来训练。具有代表性的基于卷积神经网络的跟踪算法有全卷积网络跟踪器( FCNT )和多域卷积神经网络( MD Net )。
目标检测(object detection) 在目标定位中,通常只有一个或固定数目的目标,而目标检测更一般化,其图像中出现的目标种类和数目都不定。因此,目标检测是比目标定位更具挑战性的任务。 (1) 目标检测常用数据集 PASCAL VOC包含20个类别。通常是用VOC07和VOC12的trainval并集作为训练,用VOC07的测试集作为测试。
实例分割(上图右)其实就是目标检测和语义分割的结合。相对目标检测的边界框,实例分割可精确到物体的边缘;相对语义分割,实例分割需要标注出图上同一物体的不同个体(羊1,羊2,羊3...) 目前常用的实例分割算法是Mask R-CNN。 Mask R-CNN 通过向 Faster R-CNN 添加一个分支来进行像素级分割,该分支输出一个二进制...
实例分割(上图右)其实就是目标检测和语义分割的结合。相对目标检测的边界框,实例分割可精确到物体的边缘;相对语义分割,实例分割需要标注出图上同一物体的不同个体(羊1,羊2,羊3...) 目前常用的实例分割算法是Mask R-CNN。 Mask R-CNN 通过向 Faster R-CNN 添加一个分支来进行像素级分割,该分支输出一个二进制...
⭐️ 语义分割 2.1 概念 语义分割是将图像中的每个像素分配到特定的类别中的任务。与目标检测不同,语义分割不仅需要识别图像中的物体,还需要对每个像素进行分类,从而实现对图像的精细理解。 2.2 原理 语义分割通常基于全卷积网络(Fully Convolutional Network,FCN)等深度学习模型。这些模型通过学习像素级别的特征表示...
在 目标追踪+语义分割+目标检测项目中,主要做了以下工作: 目标检测:利用 YOLO 算法进行目标检测,识别图像或视频中的各种物体,并确定它们的位置和类别。 目标跟踪j:通过使用跟踪算法(如卡尔曼滤波器、光流法等),对检测到的目标进行跟踪,以实现目标在视频序列中的持续跟踪。