采用CNN对feature map 进行放大的方法,除了有 deconvolition 之外,还有一个叫做 sub- pixel convolution 。如果做SR(超分辨率)的话,需要将一张低分辨率图像转换成一张高分辨率图像。如果直接用 deconvolution 作为 upscale 手段的话,通常会带入过多人工因素进来。而 sub-pixel conv 会大大降低这个风险。先看 sub-pi...
单一图像/视频超分辨率的目标是从单一低分辨率图像还原出高分辨图像。论文作者提出了一种可以高效计算的卷积层(称之为子像素卷积层(sub-pixel convolution layer))以便将最终的低分辨率特征映射提升(upscale)为高分辨率输出。通过这种方式,而不是使用双线性或双三次采样器(bilinear or bicubic sampler)等人工提升滤波器,...
单一图像/视频超分辨率的目标是从单一低分辨率图像还原出高分辨图像。论文作者提出了一种可以高效计算的卷积层(称之为子像素卷积层(sub-pixel convolution layer))以便将最终的低分辨率特征映射提升(upscale)为高分辨率输出。通过这种方式,而不是使用双线性或双三次采样器(bilinear or bicubic sampler)等人工提升滤波器,...
采用CNN对feature map 进行放大的方法,除了有 deconvolition 之外,还有一个叫做 sub- pixel convolution 。如果做SR(超分辨率)的话,需要将一张低分辨率图像转换成一张高分辨率图像。如果直接用 deconvolution 作为 upscale 手段的话,通常会带入过多人工因素进来。而 sub-pixel conv 会大大降低这个风险。先看 sub-pi...