在硬件资源不足的情况下,选择较小的大模型部署专业领域的问答系统,实现能和较大的大模型在专业领域相媲美甚至更好的效果。 (2)探索了大语言模型和知识图谱两种知识范式的深度结合。实现了将大语言模型和知识图谱的双向链接,可以将易读的自然语言转换为结构化的数据,进而和知识图谱中的结构化数据匹配,以增强回答专业...
在硬件资源不足的情况下,选择较小的大模型部署专业领域的问答系统,实现能和较大的大模型在专业领域相媲美甚至更好的效果。 (2)探索了大语言模型和知识图谱两种知识范式的深度结合。实现了将大语言模型和知识图谱的双向链接,可以将易读的自然语言转换为结构化的数据,进而和知识图谱中的结构化数据匹配,以增强回答专业...
在硬件资源不足的情况下,选择较小的大模型部署专业领域的问答系统,实现能和较大的大模型在专业领域相媲美甚至更好的效果。 (2)探索了大语言模型和知识图谱两种知识范式的深度结合。实现了将大语言模型和知识图谱的双向链接,可以将易读的自然语言转换为结构化的数据,进而和知识图谱中的结构化数据匹配,以增强回答专业...
文献调研法:通过查阅相关文献,了解国内外在古诗词数字化处理、知识图谱构建及可视化方面的研究进展和技术方法。实验法:通过编写Python代码,实现数据收集、预处理、知识图谱构建、深度学习大模型训练及可视化系统的设计与实现。比较分析法:对比不同方法在处理古诗词数据、构建知识图谱及可视化效果方面的差异,选择最优方案...
2. 知识图谱构建 使用Neo4j图数据库存储实体和关系数据。通过py2neo库建立起Python与Neo4j的桥梁,轻松实现数据的导入与查询。3. 自然语言处理 利用spaCy、NLTK等NLP工具进行文本分词和词性标注,通过命名实体识别(NER)技术提取医疗实体(如疾病名称、药物名称等)。随后,利用规则匹配或机器学习模型(如BiLSTM-CRF)...
分类模型:使用机器学习算法(如SVM、随机森林、逻辑回归等)训练分类器,判断一个词或短语是否为mention。 深度学习方法 基于深度学习的方法利用神经网络模型,通过端到端的方式来识别mention。这些方法可以避免复杂的特征工程,通过大量的数据训练模型来自动提取特征。如:BERT-CRF、LLM等模型等。
在ChatKBQA系统中,大模型将接收用户的问题作为输入,通过解析问题中的关键词和语义信息,从知识图谱中查找相关实体和关系,最终生成准确的答案。 ChatKBQA系统的实际应用场景非常广泛。它可以应用于智能客服、在线教育、智能助手等领域,为用户提供高效、准确的问答服务。例如,在智能客服中,ChatKBQA系统可以自动回答用户的问题...
融合知识图谱和大模型的高校科研管理问答系统设计目录一、内容概括...二、系统设计概述...3三、系统架构设计......
知识图谱作为人工智能领域的重要技术之一,能够通过结构化的知识表示和智能推理,为用户提供个性化的解决方案。结合大模型技术,如GPT系列模型,可以进一步提升系统的问答准确性和智能化水平。因此,基于Python、知识图谱和大模型技术的AI医疗问答系统具有重要的研究意义和应用价值。二、研究内容和目标 构建医疗知识图谱:从...
这里使用两种来源来填充这个架构:一是通过推理查询派生架构元素;二是利用领域内问题派生的辅助图架构来丰富架构。最后通过修剪过程,使用查询对齐的图架构来精炼超关系知识图,以提取最相关的组成部分,从而提高大型语言模型在生成答案时的效率和有效性。 「最后」,将修剪后的超关系知识图谱中的每个超三元组转换为自然语言...