基于支持向量机递归特征消除和特征聚类的致癌基因选择方法 叶小泉;吴云峰 【摘要】癌症通常由基因发生突变引起,因此从大量基因中有效地识别出少量致癌基因具有重要意义 .针对基因表达谱数据高维小样本的特点,将支持向量机递归特征消除(SVM-RFE)和特征聚类算法相结合,提出一种新的基因选择方法:K类别SVM-RFE(K-SVM-RFE...
在季节性降水及水库水位变化的影响下,部分山体会产生滑坡,滑坡位移的累积位移-时间曲线表现为明显的"阶跃型"动态变形特征.针对阶跃型滑坡位移,提出基于递归特征消除(RFE)算法的粒子群优化算法(PSO)-支持向量机回归(SVR)阶跃型滑坡位移预测模型,并以新铺滑坡为例展开研究.探究了滑坡位移数据的异常值剔除及缺失值填充方...
基于支持向量机递归特征消除和特征聚类的致癌基因选择方法