在图像处理中,K-means聚类算法常用于图像分割。算法可以将图像中的像素点按照颜色、纹理等特征划分为不同的区域,从而实现图像的自动分割。 1. 灰度图像分割 对于灰度图像,K-means聚类算法可以将像素点聚类成K个簇,然后使用每个簇内的质心点来替换簇内所有的像素点,从而实现图像颜色的量化压缩和层级分割。
对图像进行颜色区域分割.将图像转换到CIE Lab颜色空间,用K均值聚类分析算法对描述颜色的a和b通道进行聚类分析;通过提取各个颜色区域独立成为单色的新图像,对图像进行分割处理.实验结果表明,在CIE Lab空间使用K—means聚类算法可以有效地分割彩色纺织品图像的颜色区域. ...
在聚类分割中,kmeans是一种常用的聚类算法。kmeans算法通过将像素分成k个簇来实现图像分割。在kmeans算法中,首先需要随机选择k个像素作为初始聚类中心,然后将每个像素分配到最近的聚类中心。接下来,根据每个聚类中的像素的平均值重新计算聚类中心。然后,重复这个过程,直到聚类中心不再改变或达到预定的迭代次数。 然而,k...
FCM)算法进行颅脑内出血病灶的分割.首先对颅脑CT图像进行预分割,通过左右扫描算法和中值滤波算法将颅内结构从源CT图像中提取出来;然后对预分割而得到的颅内结构,利用在目标函数和隶属度函数中分别添加空间信息的改进FCM聚类算法进行出血病灶提取.通过对CT颅脑图像和添加椒盐噪声的CT颅脑图像进行病灶分割,结果显示本文算法对...
图像分割是图像分析和模式识别的首要问题,它在很大程度上决定着图像的最终质量分析和判别分析的结果,半监督聚类是目前机器学习和数据挖掘领域的一个研究热点,吸引了众多学者对该领域进行研究,并取得了一定的研究成果。本文对图像分割方法和半监督聚类方法进行了研究,提出了两种基于半监督聚类的图像分割算法,并通过实验对其...
简介:【聚类分割】基于 K-means 聚类算法实现图像区域分割附matlab代码 1 简介 对图像进行颜色区域分割.将图像转换到CIE Lab颜色空间,用K均值聚类分析算法对描述颜色的a和b通道进行聚类分析;通过提取各个颜色区域独立成为单色的新图像,对图像进行分割处理.实验结果表明,在CIE Lab空间使用K—means聚类算法可以有效地分割...
基于粒子群优化的改进模糊聚类图像分割算法将微粒群搜索聚类中心作为图像分割的聚类初值,克服了FCM分割算法对聚类中心初值敏感的缺点,大幅提高了图像分割算法的计算速度。改进的模糊聚类图像分割算法,一方面考虑到像素的空间位置信息和相互邻域之间像素有很大的相关性,在目标函数中引入邻域惩罚函数;另一方面提出聚类在二维方向...
对图像进行颜色区域分割.将图像转换到CIE Lab颜色空间,用K均值聚类分析算法对描述颜色的a和b通道进行聚类分析;通过提取各个颜色区域独立成为单色的新图像,对图像进行分割处理.实验结果表明,在CIE Lab空间使用K—means聚类算法可以有效地分割彩色纺织品图像的颜色区域. ...
对图像进行颜色区域分割.将图像转换到CIE L*a*b颜色空间,用K均值聚类分析算法对描述颜色的a*和b*通道进行聚类分析;通过提取各个颜色区域独立成为单色的新图像,对图像进行分割处理.实验结果表明,在CIE L*a*b空间使用K—means聚类算法可以有效地分割彩色纺织品图像的颜色区域. ...