集在2种回归方法下的反演精度均高于Sentinel-2A变量集;联合Sentinel-2A和ICESat-2/ATLAS变量集,随机森林方法的反演精度最高,其R 2,RMSE和rRMSE分别为0.7034,84.78 m^(3)/hm^(2)和36.46%.整体来说,与Sentinel-2A数据相比,基于ICESat-2/ATLAS数据及其与多源数据联合的反演模型均可以提高森林蓄积量反演精度和模型...