图神经网络和强化学习都是机器学习中研究的主流模型,如何结合GNN和RL,是一个有趣的问题。最近来自美国堪萨斯州立大学发布了《基于图神经网络的强化学习》综述,阐述相关算法与应用。 深度强化学习(DRL)已经增强了各种人工智能领域的能力,包括模式识别、机器人、推荐系统和游戏。类似地,图神经网络(GNN)也证明了它们在对图结构数据进行监督学习
DiffPool: Differentiable Pooling介绍了一种聚合图中的节点,从而学习到包含层级信息的图表示。 原文传送门 Ying, Zhitao, et al. "Hierarchical graph representation learning with differentiable pooling." Advances in neural information processing systems. 2018. 特色 在强化学习中,状态的表示学习是一个非常重要的问...
本文提出一个基于图神经网络的深度强化学习框架,使得智能体在进行网络与计算资源联合优化的同时,兼具拓扑泛化性,更加适应网络拓扑的动态变化。借助图神经网络的泛化优势,该方法可在变动的网络拓扑中运行,且相比基于传统深度强化学习的方法具有更强的优化决策能力。 关键词: 算力网络;路由优化;深度学习;图神经网络;资源分...
课程内容上做了大幅度的更新,一方面新增了对前沿主题的讲解如图神经网络(GCN,GAT等),对核心部分(如凸优化、强化学习)加大了对理论层面上的深度。除此之外,也会包含科研方法论、元学习、解释性、Fair learning等系列主题。课程采用全程直播授课模式。 模块一:凸优化 第一章:凸优化介绍 | 从优化角度理解机器学习 | ...
在本期训练营(第四期)中我们对内容做了大幅度的更新,一方面新增了对前沿主题的讲解如图神经网络,另外一方面对核心部分(如凸优化、强化学习)加大了对理论层面上的深度。目前在全网上应该找不到类似体系化的课程。课程仍然采用全程直播授课模式。 那...
飞桨深度学习平台工具组件,包括 PaddleHub 迁移学习、PARL 强化学习、PALM 多任务学习、PaddleFL 联邦学习、PGL 图神经网络、EDL 弹性深度学习计算、AutoDL 自动化深度学习、VisualDL 训练可视化工具等,旨在推动前沿深度学习技术的产业化落地,满足多样的产业需求。下面带来飞桨深度学习平台工具组件详细解读,核心内容 3993 字...
目前的研究工作分为两个流派:一种是通过运筹学,另一种是深度学习。运筹学的方法是把 VRP 定义为数学优化问题,通过精确或启发式算法达到最优或者近似最优解,但是真实场景的数据量下需要花费的时间很多。而对于深度学习,之前的研究是在人工生成的数据集上,忽略了真实世界的运输网络。在真实 VRP 问题数据集上,没有...
我们希望通过这样的一门课程来增强对机器学习的深入理解,掌握背后的每个细节,这一点很重要。这门课程主要包含了凸优化、图神经网络、深度贝叶斯以及强化学习,也是机器学习领域比较主流的四大领域。每个领域都有一定的门槛,但真正经历过之后大...
1、主要分为三大类:半监督学习,包括图神经网络和图卷积神经网络; 2、无监督学习图自编码机; 3、最新的进展,图对抗神经网络和图强化学习。分析了不同方法的特点和联系。 二、图神经网络 (GNN) 图神经网络是图数据最原始的半监督深度学习方法。 GNN的思路很简单:为了编码图的结构信息,每个节点可以由低维状态向量...