基础大模型训练所需的数据类型包含两大类,一是用于预训练(Pre-training)的世界知识,二是用于对齐(Alignment)的数据。合成数据作为真实数据的一种替代,现阶段虽然在预训练占比不高,但未来发展潜力巨大,可作为一个“新物种”密切关注;目前合成数据多应用于提升对齐阶段的数据获取效率,增强模型安全和可靠性。 (1)合成...
合成数据大模型训练中的作用 基础大模型训练所需的数据类型包含两大类,一是用于预训练(Pre-training)的世界知识,二是用于对齐(Alignment)的数据。合成数据作为真实数据的一种替代,现阶段虽然在预训练占比不高,但未来发展潜力巨大,可作为一个“新物种”密切关注;目前合成数据多应用于提升对齐阶段的数据获取效率,增强模...
基础大模型训练所需的数据类型包含两大类,一是用于预训练(Pre-training)的世界知识,二是用于对齐(Alignment)的数据。合成数据作为真实数据的一种替代,现阶段虽然在预训练占比不高,但未来发展潜力巨大,可作为一个“新物种”密切关注;目前合成数据多应用于提升对齐阶段的数据获取效率,增强模型安全和可靠性。 (1)合成...
对于提高此类高质量训练数据的供给,现行的主要方案侧重于构建更为开放、包容的高质量数据源,包括建立具有公共或准公共属性的高质量数据集,鼓励行业数据的进一步共享,放宽对于训练数据的权属保护规则等。而合成数据为模型数据供给提供了新的技术方案,将合成数据应用于大模型训练数据中,可以从以下三个方面帮助解决高质量训练...
合成数据大模型训练中的作用 基础大模型训练所需的数据类型包含两大类,一是用于预训练(Pre-training)的世界知识,二是用于对齐(Alignment)的数据。合成数据作为真实数据的一种替代,现阶段虽然在预训练占比不高,但未来发展潜力巨大,可作为一个“新物种”密切关注;目前合成数据多应用于提升对齐阶段的数据获取效率,增强模...