K-means算法基于对象之间的聚类进行聚类,需要输入聚类的个数。DBSCAN算法基于密度进行聚类,需要确定阈值,两者的聚类结果均与输入参数关系很大。DBSCAN可以处理不同大小和不同形状的簇,而K-means算法则不适合。若数据分布密度变化大,则这两种算法都不适用。反馈 收藏 ...
关于聚类算法K-Means和DBSCAN的叙述中,不正确的是___。 A.K-Means和DBSCAN的聚类结果与输入参数有很大的关系B.K-Means基于距离的概念而DBSCAN基于密度的概念进行聚类分析C.K-Means很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇D.当簇的密度变化较大时,DBSCAN不能很好地处理,而K-Mea...
K-means算法基于对象之间的聚类进行聚类,需要输入聚类的个数。DBSCAN算法基于密度进行聚类,需要确定阈值,两者的聚类结果均与输入参数关系很大。DBSCAN可以处理不同大小和不同形状的簇,而K-means算法则不适合。若数据分布密度变化大,则这两种算法都不适用。反馈 收藏 ...
关于聚类算法K-Means和DBSCAN的叙述中,不正确的是()A.K-Means和DBSCAN的聚类结果与输入参数有很大的关系B.K-Means基于距离的概念而DBSCAN基于密度的概念进行聚类分析C.K-Means很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇D.当簇的密度变化较