分类是机器学习中比较常见的任务,对于分类任务常见的评价指标有准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1 score、ROC曲线(Receiver Operating Characteristic Curve)等 这篇文章将结合sklearn对准确率、精确率、召回率、F1-score进行讲解 混淆矩阵 如上图所示,要了解各个评价指标,首先需要知道混淆矩阵,混...
【全463集】入门到精通,一口气学完线性回归、逻辑回归、梯度下降、SVM支持向量机、随机森林、决策树、贝叶斯、聚类算法、朴树贝叶斯、神经网络等十二大机器学习算法 309 -- 3:15 App AUC很高但召回率很低怎么办?很实用的补救方法 | ROC | Recall | 阈值 | 准确率 | 混淆矩阵 | 网络安全 | Python 404 -- 2...
精准率:检出的这个类别中正确数/检出的这个类别数量(包括错误和正确) 而召回也是衡量一个类别的指标 f1-score = 2×(精准率×召回率)/(精准率+召回率) 注意f1-score也是衡量某个类别的指标 而模型最后也会计算所有指标的一个平均值和加权值
7. F1F1-Score 和 FβFβ-Score “平衡点”(Break-Event Point,简称BEP)就是一个综合考虑精确率和召回率的指标,它是“精确率=召回率”时的取值。如图1所示,模型C的BEP是0.64,而基于BEP的比较,可认为模型A优于B。 但是BEP还是过于简化了,更常用的是F1F1度量,也称F1分数、F1F1-Score或F1F1-Measure F1=2...
收起 准确率、精确率、召回率、F1-score (1)准确率 (2)精确率 (3)召回率 (4)F1-score RO...
一般来说准确率和召回率呈负相关,一个高,一个就低,如果两个都低,一定是有问题的。 一般来说,精确度和召回率之间是矛盾的,这里引入F1-Score作为综合指标,就是为了平衡准确率和召回率的影响,较为全面地评价一个分类器。F1是精确率和召回率的调和平均。
F1-Score 说明:Precision为准确率,Recall为召回率,Precision值和Recall值是既矛盾又统一的两个指标,为了提高Precision值,分类器需要尽量在“更有把握”时才把样本预测为正样本,但此时往往会因为过于保守而漏掉很多“没有把握”的正样本,导致Recall值降低。 除此F1-score之外,P-R曲线、ROC、AUC也可以衡量算法的效果!
F1-score F1-score 是精确率和召回率的加权平均值,计算公式为 F1-score=2∗precision∗recallprecision+recall Precision 体现了模型对负样本的区分能力,Precision 越高,模型对负样本的区分能力越强 Recall 体现了模型对正样本的识别能力,Recall 越高,模型对正样本的识别能力越强 ...
召回率 = 1400 / 1400 = 100% F值 = 70% * 100% * 2 / (70% + 100%) = 82.35% 由此可见,正确率是评估捕获的成果中目标成果所占得比例;召回率,顾名思义,就是从关注领域中,召回目标类别的比例;而F值,则是综合这二者指标的评估指标,用于综合反映整体的指标。
F1 分数只有在精确度和召回率都为1时才会等于1。只有在精确度和召回率都很高的情况下,F1 分数才会很高。F1 分数是精确度和召回率的调和平均值,比准确率更好地度量了性能。 在怀孕的例子中,F1 分数 = 2 *(0.857 * 0.75)/(0.857 + 0.75)= 0.799。