SCINet(自校正照明网络)是一种专为低光照图像增强设计的框架。通过级联照明学习过程和权重共享机制来处理图像,优化了照明部分以提升图像质量。SCINet引入了自校正模块,用于减少计算负担并提高结果的稳定性。此外,无监督训练损失功能使得模型能够适应不同场景。SCINet还显示出对简单操作设置的稳定性能适应性,以及可以提升现有照明增强工作性能的普适
本文给大家带来的改进机制是低照度图像增强网络SCINet,SCINet(自校正照明网络)是一种专为低光照图像增强设计的框架。它通过级联照明学习过程和权重共享机制来处理图像,优化了照明部分以提升图像质量。我将该网络集成在YOLOv5的主干上针对于图像的输入进行增强,同时该网络的并不会增加参数和计算量,基本和普通的网络结构...
本文给大家带来的改进机制是低照度图像增强网络SCINet,SCINet(自校正照明网络)是一种专为低光照图像增强设计的框架。它通过级联照明学习过程和权重共享机制来处理图像,优化了照明部分以提升图像质量。我将该网络集成在YOLOv5的主干上针对于图像的输入进行增强,同时该网络的并不会增加参数和计算量,基本和普通的网络结构...
本文给大家带来的改进机制是低照度图像增强网络SCINet,SCINet(自校正照明网络)是一种专为低光照图像增强设计的框架。它通过级联照明学习过程和权重共享机制来处理图像,优化了照明部分以提升图像质量。我将该网络集成在YOLOv8的主干上针对于图像的输入进行增强,同时该网络的并不会增加参数和计算量,基本和普通的网络结构...
本文给大家带来的改进机制是低照度图像增强网络SCINet,SCINet(自校正照明网络)是一种专为低光照图像增强设计的框架。它通过级联照明学习过程和权重共享机制来处理图像,优化了照明部分以提升图像质量。我将该网络集成在YOLOv8的主干上针对于图像的输入进行增强,同时该网络的并不会增加参数和计算量,基本和普通的网络结构...