on-policy:行动策略和目标策略是同一个策略 off-policy:行动策略和目标策略不是同一个策略 2. 什么是...
当我们说一个算法是“off-policy”时,我们指的是该算法可以使用从一个策略收集的数据来学习另一个策略...
强化学习领域中的offline与off-policy是两个不同的概念,它们均与利用以往经验训练智能体有关。Off-Policy:在强化学习背景下,策略指的是智能体如何选择行动的函数。若算法被描述为“off-policy”,意指此算法可以利用从一个策略收集的数据来学习另一个策略。以Q-learning为例,这是一个典型的off-policy...
由于on-policy只能利用当前策略下的数据,因此它的数据利用效率相对较低。而off-policy可以利用所有的数据进行学习,因此它的数据利用效率相对较高。 3.稳定性和收敛速度不同 on-policy方法通常有更好的稳定性和更快的收敛速度,因为它严格按照当前策略进行。而off-policy方法由于可以利用其他策略的经验,可能会...
off-policy算法是指在生成样本的策略和更新网络参数时使用不同的策略。以Q-learning为例,Q-learning在计算下一状态的预期收益时使用了max操作,直接选择最优动作,而当前策略可能并未选择到最优动作,因此生成样本的策略和学习时的策略不同,属于off-policy算法。而on-policy算法则指在生成样本和更新网络...
同时利用过去行动的有益信息来改进学习。总结,on-policy策略与off-policy策略的主要区别在于Q值更新时所依据的策略是否与当前执行策略相同。on-policy策略直接使用当前策略进行决策与更新,而off-policy策略则允许使用与更新策略不同的策略进行决策,从而更灵活地探索状态空间并利用有益信息。
强化学习可以分成off-policy(离线)和on-policy(在线)两种学习方法,按照个人理解,判断一个强化学习是off-policy还是on-policy的依据在于生成样本的policy(value-funciton)和网络参数更新时的policy(value-funciton)是否相同。Q-learning在计算下一状态的预期收益时使用了max操作,直接选择最优动作,而...
你好,off-policy和on-policy的根本区别在于off-policy学习的policy和agent实际执行的policy并不相同。虽然看起来很trivial,但这给了off-policy极大的发挥空间,使RL有能力做knowledge representation。假设有一个机器人在地面上行走,我们想知道在某个状态时如果机器人停止动力系统,需要多久才能完全停下来。我...
分享到: 离策略 分类: 科技|查看相关文献(pubmed)|免费全文文献 详细解释: 以下为句子列表: 分享到:
\(\pi(s)\)可以由\(v_{\pi}(s)\)或者\(q_{\pi}(s,a)\)决定。 强化学习的目 ...