If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is View Solution Let f(x)=∫x0costtdt,(x>0),then for x = (2n+1)π2f(x) has View Solution Exams IIT JEE NEET UP Board Bihar Board CBSE
F(x)=int0^x2।t। dt के लिए स्पर्श रेखाएँ जोकि पहले निर्देशांक कोण के समद्रिभाजक के सम
Answer and Explanation: {eq}g(x) = \begin{cases} \int_0^x 0 \, dt & \text{if} & t < 0\ \int_0^x \,t \, dt & \text{if} & 0 \leq t \leq 1\ \int_0^x (2 - t) \, dt &.....
∫0xtf(x–t)dt 进行求导运算的结果是什么? 二、解析 令u = x − t,则: t=x–u. dt=–du. 又由于 t ∈ (0,x), 因此,u = x − t ∈ (x,0). Next 于是: ∫0xtf(x–t)dt= –∫x0(x–u)f(u)du= ∫0x(x–u)f(u)du= ∫0xx⋅f(u)du–∫0xu⋅f(u)du= x∫0x...
Let {eq}g\left( x \right) = \int\limits_0^x {f\left( t \right)dt} {/eq}, where {eq}f {/eq} is the function whose graph is shown. Does the function {eq}g\left( x \right) {/eq} have any critical points? Critical P...
高等数学 积分函数的奇偶性的一个问题,求指点若f(x)是奇函数,则 $$ \int _ { 0 } ^ { x } $$f(t)dt为偶函数;若f(x)是偶函数,则 $$ \int _ { 0 } ^ { x } $$f(t)dt为奇函数.&偶函数的原函数之一为奇函数“导函数为奇函数,那么原函数为偶函数;导函数为偶函数,那么...
解: \int _{0}^{x}[ \int _{0}^{t}f(u)du]dt= \int _{0}^{x}f(t)(x-t)dt =[t \bullet \int _{0}^{t}f(u)du] \mid _{0}^{x}- \int _{0}^{x}tf(t)dt =x \cdot \int _{0}^{x}f(u)du- \int _{0}^{x}tf(t)dt =x \cdot \int _{...
int0^x f(t)dt=x+intx^1 tf(t)dt হলে f(1) এর মান নির্ণয় করো।
If ∫x0f(t)dt=x+∫1xtf(t)dt, then the value of f(1) is Solution in Tamil A 1/2 B 0 C 1 D −1/2 Video Solution free crash course Study and Revise for your exams Unlock now Text SolutionVerified by Experts The correct Answer is:A ∫x0f(t)dt=x+∫1xtf(t)dt or ddx...
Answer to: Let g(x) = int 0 to x (f(t) dt). Determine the value of x where g has a minimum value by using the graph of the function f as shown in...