零样本泛化能力(Zero-shot Generalization)是深度学习模型,尤其是大模型的一个重要特性。它与传统的深度学习模型的泛化能力有着显著区别。 有同学在刚接触大模型的时候也许会对这个问题产生困惑,那么到底什么是零样本泛化能力呢? 1.零样本泛化能力的定义 零样本泛化能力指的是模型在从未见过的特定任务或数据集上,仅通过给定的
Cross-Datasets Generalization Context-dependent Visual Reasoning on Bongard-HOI Ablation Study TL;DR 把CLIP用到Test-Time Adaptation(TTA)这一setting下的一篇文章,具体涉及到的任务是图像分类和context-dependent visual reasoning。实验上,图像分类任务和CLIP、CoOp、CoCoOp做了比较;context-dependent visual reasoning...
标题:What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization? 文章链接:What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization? 代码:bigscience-workshop/architecture-objective 发表:2022 领域:LLM 最优架构探索 一句话总结:作...
We find that zero-shot generalization occurs during the very early stage of instruction tuning, despite the metrics chosen for measurement, while loss serves as a reasonable and suitable metric to measure zero-shot generalization due to its stability and fairness across datasets. We identify two ent...
Updates Code for PrompAlign is released. [November 3, 2023] Our paper is accepted at NeurIPS 2023 [September 22, 2023] Abstract:The promising zero-shot generalization of vision-language models such as CLIP has led to their adoption using prompt learning for numerous downstream tasks. Previous ...
Zero-shot learningCosine distance lossGeneralization evaluationData splitsWith the knowledge learned from some labelled training images, zero-shot learning (ZSL) aims to recognize new visual concepts by leveraging some intermediate information for both seen and unseen classes. Despite the existence of ...
今天给大家介绍一篇由42位作者共同参与的论文《Multitask Prompted Training Enables Zero-Shot Task Generalization》这篇论文由Hugging Face牵头,如果用一连串数字来概括这篇论文,我们就会发现“大力真的可以创造奇迹”:· 一共收集了171个多任务数据集,总共创建了1939个prompt,平均每个数据集有11.3个prompt;· 共...
Multitask Prompted Training Enables Zero-Shot Task Generalization 论文链接: https://arxiv.org/abs/2110.08207 2.1 Motivation T0 和 FLAN 工作整体相似,区别是增加了任务和 prompt 数量,FLAN 使用了 decoder-only,T0 使用了 encoder+decoder,FLAN 每次针对测试一个任务训练一个模型,其他任务作为训练集,T0 为了测...
前几天,JayJay刷到一篇NB的paper《Multitask Prompted Training Enables Zero-Shot Task Generalization》,共有42位作者参与,实属巨制: 这篇论文由Hugging Face牵头,如果用一连串数字来概括这篇论文,我们就会发现“大力真的可以创造奇迹”: 一共收集了171个多任务数据集,总共创建了1939个prompt,平均每个数据集有11.3个...
Large language models have recently been shown to attain reasonable zero-shot generalization on a diverse set of tasks (Brown et al., 2020). It has been hypothesized that this is a consequence of implicit multitask learning in language models' pretraining (Radford et al., 2019). Can zero-...