Zero-Shot要求模型具有广泛的背景知识和推理能力,而Few-Shot则要求模型能够从少量示例中学习并泛化到新示例。 提示工程 Zero-Shot提示、One-Shot提示、Few-Shot提示是在提示工程(Prompt Engineering)中的概念。 Zero-Shot提示:模型只根据任务的描述生成响应,不需要任何示例。 One-Shot提示:只提供一个例子。 Few-Shot...
例如,在人脸识别领域,one-shot学习可以帮助识别未在训练集中出现的人脸。在物体检测和图像分类领域,one-shot学习可以使模型更好地适应新的物体类别,而无需大量标记样本。 少样本学习(Few-Shot Learning)方法原理 最后要介绍的学习方法是少样本学习(Few-Shot Learning),它是元学习的一个子领域,旨在开发能够从少量有...
少量样本学习(Few-Shot Learning)和零样本学习(Zero-Shot Learning)是近些年来在机器学习领域中备受关注的研究方向。这些方法的出现为解决某些特定问题提供了全新的视角,尤其是在数据稀缺的场景下。这两种学习方法的核心思想是,在不需要大量标注数据的情况下,依然能够训练出高效且表现优异的模型。这种能力在实际应用中...
One-Shot Learning可以无需重新训练即可应用于新的类别的数据。 One-shot learning 属于Few-shot learning的一种特殊情况。 3 Few-shot learning 小样本学习 如果训练集中,不同类别的样本只有少量,则称为Few-shot learning. 就是给模型待预测类别的少量样本,然后让模型通过查看该类别的其他样本来预测该类别。比如:给...
Zero-shot学习和Few-shot学习是机器学习中的两种特殊场景,它们涉及到如何让模型在只有非常有限或没有标注数据的情况下进行学习和预测。 1. Zero-shot Learning(零样本学习) 定义: Zero-shot learning是指模型能够识别或预测从未在训练阶段见过的类别。这意味着模型必须能够推广到训练数据中未出现的类别。
在迁移学习中,由于传统深度学习的学习能力弱,往往需要海量数据和反复训练才能修得泛化神功。为了 “多快好省” 地通往炼丹之路,炼丹师们开始研究 Zero-shot Learning / One-shot Learning / Few-shot Learning。 爱上一匹野马 (泛化能力),可我的家里没有草原 (海量数据) 。
先解释 one-shot。公司门禁用了人脸识别,你只提供一张照片,门禁就能认识各个角度的你,这就是 one-shot。可以把 one-shot 理解为用 1 条数据 finetune 模型。在人脸识别场景里,one-shot 很常见。 zero-shot 与 few-shot,回到 NLP 场景。用 wikipedia、新闻等,训练一个 GPT 模型,直接拿来做对话任务,这个就是...
Zero-shot Learning:即使没有见过某个类别的样本,也能预测出这个类别的能力。具体来说,就是通过学习一个映射,使得在训练时没有看到过的类别,在遇到时也能通过这个映射得到该类别的特征。 Few-shot Learning:只需要几个样本来识别新类别的能力。与One-shot Learning类似,都是在训练集中每个类别都只有少量样本(一个...
总的来说,Zero-shot Learning、One-shot Learning和Few-shot Learning是机器学习领域中非常有趣且富有挑战性的研究方向。它们有着广泛的应用前景,比如在医疗诊断、图像识别、语音识别等领域。虽然还有很多问题需要解决,但是这个领域正在迅速发展,我们期待着更多的突破和创新。
通过设计提示(prompt)模板,实现使用更少量的数据在预训练模型(Pretrained Model)上得到更好的效果,多用于:Few-Shot,Zero-Shot 等任务。 1.背景介绍 prompt 是当前 NLP 中研究小样本学习方向上非常重要的一个方向。举例来讲,今天如果有这样两句评论: 什么苹果啊,都没有苹果味,怪怪的味道,而且一点都不甜,超级难吃...