zero-shot是一种机器学习方法,指的是模型能够处理从未在训练数据中见过的任务或类别,即模型在面对新任务时不需要额外的训练和微调也能做出合理的决策。 以视觉场景为例,如CLIP(Contrastive Language-Image Pre-Training),它将图像和文本嵌入到同一个语义空间中,使得模型能够理解并关联图像和文本之间的关系。 在训练过...
Zero-Shot要求模型具有广泛的背景知识和推理能力,而Few-Shot则要求模型能够从少量示例中学习并泛化到新示例。 提示工程 Zero-Shot提示、One-Shot提示、Few-Shot提示是在提示工程(Prompt Engineering)中的概念。 Zero-Shot提示:模型只根据任务的描述生成响应,不需要任何示例。 One-Shot提示:只提供一个例子。 Few-Shot...
研究者提出了一个新的任务称之为零样本实例分割(Zero-Shot Instance Segmentation)——ZSI。ZSI的任务要求在训练过程中,只用已经见过并有标注的数据进行训练,但在测试和推理时能够同时分割出见过和没见过的物体实例。 首先用数学语言对该任务进行描述,然后提出了一个方法来解决ZSI的问题。新方法包括零样本检测器(Zero-...
对比的基线模型包括Gato, Flamingo和Decision Transformer(DT) 首先在模型缩放(Model scaling)上,研究人员对所有方法从2M到200M参数量进行训练,编码器的尺寸始终保持为T5-base,在所有层次的zero-shot泛化性评估上,VIMA都绝对好于其他工作。 尽管Gato和Flamingo在更大尺寸的模型上性能有所提升,VIMA也仍然好于所有模型。
这种能力是由先进的深度学习模型和迁移学习方法得以实现的,zero-shot技术通常用于自然语言处理、计算机视觉和其他机器学习领域。 二、zero-shot的意义 1. 提高模型泛化能力 在传统的监督学习中,模型只能对其训练过的类别或任务进行预测。而zero-shot技术使得模型能够推广到先前未见过的情况下,提高了模型的泛化能力,使其...
简介:机器学习任务按照对 **样本量** 的需求可以分为:传统监督式学习、Few-shot Learning、One-shot Learning、Zero-shot Learning。 一、传统监督式学习 传统learning,炼丹模式。传统深度学习的学习速度慢,往往需要学习海量数据和反复训练后才能使网络模型具备不错的泛化能力,传统learning可以总结为:海量数据 + 反复训...
我们框架的 zero-shot 学习能力来自带有参数约束的组合性(compositionality)和模块性(modularity)。我们视觉化了框架的中间输出,以证明该智能体真正可以理解如何解决问题。我们相信我们的成果能为如何在 3D 环境中训练带有相似能力的智能体提供初步的见解。原文链接:http://research.baidu.com/ai-agent-human-like-...
研究者提出了一个新的任务称之为零样本实例分割(Zero-Shot Instance Segmentation)——ZSI。ZSI的任务要求在训练过程中,只用已经见过并有标注的数据进行训练,但在测试和推理时能够同时分割出见过和没见过的物体实例。 首先用数学语言对该任务进行描述,然后提出了一个方法来解决ZSI的问题。新方法包括零样本检测器(Zero...
Zero-shot:直接给模型任务说明而不提供任何示例。 示例:生成一篇关于气候变化的文章。 One-shot:提供一个示例帮助模型理解任务格式。 示例:生成一篇关于气候变化的文章。示例:气候变化正在加速全球变暖,需要更多国际合作。 Multi-shot:提供多个示例以更全面地指导模型输出。
注意,这里首先是使用In-Context-Learning(上下文学习)的范式来进行prompt,即在prompt里面添加一些问答对作为“示范”,LLM在看到这些示范之后,就可以更好地进行Zero-shot任务(或者理解成Few-shot吧,毕竟需要提供一些标注的样本)了。 CoT的方法,就是在 In-Context-Learning 的范式中,增加了对推理的示范,从而希望LLM在给...