Zero-DCE++ Zero-DCE是发表在CVPR会议上的。之后,Zero-DCE的拓展版Zero-DCE++发到了TPAMI期刊上。期刊版版面足够,原论文中一些来不及讲清的地方(比如空间一致误差)在期刊版中都有更详尽的说明。大家如果想读论文,建议直接读期刊版本的。论文层层递进,逻辑非常清楚,非常适合从头到尾读一遍。 Zero-DCE++在方法上主...
3.论文主要内容简介 1). 研究动机 2).Zero-DCE 3)参数估计网络(DCE-Net) 4.MindSpore代码链接 5.算法框架技术要点 6.实验结果 7.总结与展望 MindSpore作为一个开源的AI框架,为产学研和开发人员带来端边云全场景协同、极简开发、极致性能,超大规模AI预训练、极简开发、安全可信的体验,2020.3.28开源来已超过上百...
参数方面主要探讨Zero-DCE的深度宽度以及迭代的次数。如上图所示,L-F-N代表Zero-DCE有L层卷积,每层有F个feature map以及迭代次数为N。Impact of Training Data:使用不同数据集对Zero-DCE进行训练:1)原训练集中(2422)的900张low-light图像Zero-DCELow ;2)DARK FACE中9000张未标注的low-light图像Zero-DCELarge...
Zero-DCE论文解读 Zero-DCE论⽂解读 Zero-DCE github:paper:⼀、创新点 我们提出了第⼀个⽴于成对和不成对的训练数据的弱光增强⽹络,从⽽避免了过度拟合的风险。因此,我们的⽅法可以很好地推⼴到各种光照条件。设计了⼀个特定于图像的曲线,该曲线能够通过迭代应⽤⾃⾝来近似像素级和⾼阶...
本发明提供一种基于Zero‑DCE网络结构改善为有监督用于图像增强的方法,所述方法构建一套有监督学习的卷积神经网络,使用对比度增强损失,改进损失函数对于有监督学习的适应,通过反向传播,让模型通过训练自适应学习映射函数。由于现有Zero‑DCE增强的图像视觉效果在真实场景下不够好,比如出现对比度下降,图像不清晰等,使用...
【论文链接】ieeexplore.ieee.org/doc【基于MindSpore实现代码开源链接】gitee.com/mindspore/con 3. 算法框架技术要点 Zero-DCE++通过使用Depth-wise卷积与Point-wise卷积的堆叠来进一步减少参数量,具体模块代码如下: 图6 基本卷积模块 上文中提到,由于Zero-DCE++支持对图像进行下采样之后以提高推理速度,因此模型实现过...