Zero-Shot Adversarial Robustness LVM模型中对于新的任务和数据集巨有良好的泛化性,CLIP在zero-shot任务上的能力显著。但是,尚未有人关注过zero-shot的对抗鲁棒性的迁移效果。本文主要针对的就是在zero-shot任务上模型的对抗鲁棒性能力。 Adversarial Training 对抗训练是一种普遍的用于增强模型对抗鲁棒性的方式,其原理...
第一次读感觉方法很naive,第二遍读发现无监督和zero-shot是亮点,第三遍读发现关键竟然是robustness…...
We propose a new zero-shot CNN evaluation index based on this robustness index.Chisato TakahashiKenya Jin'noJournal of Signal Processing (1342-6230)
In the task of semantic segmentation for autonomous driving, it is significant to study the zero-shot adversarial robustness of SAM. Therefore, we deliver a systematic empirical study on the robustness of SAM without additional training. Based on the experimental results, the zero-shot adversarial ...
and original models using clean examples. Its objective is to maintain model performance on clean samples while enhancing overall robustness. The experiments validate that our method yields a 9.58% enhancement in zero-shot robust accuracy over the current state-of-the-art techniques across 16 ...
Dictionary, Encyclopedia and Thesaurus - The Free Dictionary13,881,676,625visits served TheFreeDictionary Google ? Keyboard Word / Article Starts with Ends with Text EnglishEspañolDeutschFrançaisItalianoالعربية中文简体PolskiPortuguêsNederlandsNorskΕλληνικήРусский...
Instead, the weights of RRDNet will be updated by a zero-shot scheme of iteratively minimizing a specially designed loss function. Such a loss function is devised to evaluate the current decomposition of the test image and guide noise estimation. Experiments demonstrate that RRDNet can achieve ...
1a). To improve the noise robustness of ZS-DeconvNet while maintaining its unsupervised characteristic, we adopted an image recorrupting scheme26 that generates two noise-independent recorrupted images from the original image, which are then used as inputs and GTs in the network training (Methods...
论文关键词:Zero-shot learning,Robust generalization,Adversarial robustness论文评审过程:Received 26 September 2021, Revised 4 December 2021, Accepted 18 January 2022, Available online 23 January 2022, Version of Record 1 February 2022.论文官网地址:https://doi.org/10.1016/j.imavis.2022.104392 ...
引入有效鲁棒性(effective robustness)的概念,即模型在分布偏移数据集上的准确性减去仅在参考分布上训练的基线模型的准确性。 有效鲁棒性的核心思想是,如果一个模型在参考分布上的准确性很高,我们可能会期望它在分布偏移的情况下也能保持较高的准确性。然而,这并不总是成立的,因为数据分布的变化可能会对模型的性能产...