局限 太耗时了,前面扫描场景需要3-5min, 用NeRF渲染需要6min,用CLIP来获得匹配分数也需要时间。 而且没提到泛化性。 总结 第一篇展示了如何使用2D VLM 来zero-shot执行语言指令下的3D 物体整理任务,而不需要收集任何example.
然后用随机权重初始化一个类似于NeRF的模型,从随机的相机位置和角度反复渲染该NeRF的视图,用这些渲染结果作为环绕Imagen的分数蒸馏损失函数的输入。 给出一个预训练好的文本到图像的扩散模型,一个以NeRF形式存在的可w微分的图像参数化DIP,以及一个损失函数(最小值代表好样本),这样无三维数据的文本到三维合成所需的所...
从应用价值出发,CLIP的工作非常有意义,其凭借其强大的zero-shot能力,为很多数据不足的领域也提供了帮...
2020年,神经辐射场(NeRF)模型发布,其中体积光线追踪器与从空间坐标到颜色和体积密度的神经映射相结合,使得NeRF已经成为神经逆向渲染的一个重要工具。 最初,NeRF被发现可以很好地用于「经典」的三维重建任务:一个场景下的不同角度图像提供给一个模型作为输入,然后优化NeRF以恢复该特定场景的几何形状,能够从未观察到的角...
很多三维生成方法都是基于NeRF模型,比如2022年提出的Dream Fields使用预训练的CLIP模型和基于优化的方法来训练NeRF,直接从文本中生成3D模型,但这种方式生成的三维物体往往缺乏真实性和准确性。 DreamFusion采用了与Dream Field类似的方法,但模型中的损失函数基于概率密度蒸馏,最小化基于扩散的前向过程的共享的高斯分布族与...
最近Google研究员另辟蹊径,提出一个新模型DreamFusion,先使用一个预训练2D扩散模型基于文本提示生成一张二维图像,然后引入一个基于概率密度蒸馏的损失函数,通过梯度下降法优化一个随机初始化的神经辐射场NeRF模型。 论文链接:https://arxiv.org/abs/2209.14988 ...
很多三维生成方法都是基于NeRF模型,比如2022年提出的Dream Fields使用预训练的CLIP模型和基于优化的方法来训练NeRF,直接从文本中生成3D模型,但这种方式生成的三维物体往往缺乏真实性和准确性。 DreamFusion采用了与Dream Field类似的方法,但模型中的损失函数基于概率密度蒸馏,最小化基于扩散的前向过程的共享的高斯分布族与...
文章首先指出,在少样本(few-shot)微调过程中,直接采用预训练的CLIP模型可能导致灾难性遗忘和过拟合。此...
最近Google研究员另辟蹊径,提出一个新模型DreamFusion,先使用一个预训练2D扩散模型基于文本提示生成一张二维图像,然后引入一个基于概率密度蒸馏的损失函数,通过梯度下降法优化一个随机初始化的神经辐射场NeRF模型。 论文链接:https://arxiv.org/abs/2209.14988 ...
对于每个文本提示,都从头开始训练一个随机初始化的NeRF。 DreamFusion优化的每次迭代都包含四步: 1、随机采样一个相机和灯光 在每次迭代中,相机位置在球面坐标中被随机采样,仰角范围从-10°到90°,方位角从0°到360°,与原点的距离为1到1.5 同时还在原点周围取样一个看(look-at)的点和一个向上(up)的矢量,并...