为了在YOLOv8的C2f模块中添加不同的注意力机制,我们需要定义这些注意力机制并在C2f模块中集成它。以下是具体的代码实现: 文章代码仅供参考。 1.Channel Attention(CA) importtorchimporttorch.nnasnnclassChannelAttention(nn.Module):def__init__(self,in_channels,red
具体改进方法可访问如下地址: YOLOv8改进 | ODConv卷积助力极限涨点(附修改后的C2f、Bottleneck模块代码),点击此处即可跳转
在本文的末尾提供可以直接替换卷积模块的ODConv,添加ODConv模块的C2f和Bottleneck(配合教程将代码复制粘贴到你自己的代码中即可运行)给大家,该卷积模块主要具有更小的计算量和更高的精度,其中添加ODConv模块的网络(只替换了一处C2f中的卷积)参数量由8.9GFLOPS减小到8.8GFLOPS,...
简介:YOLOv8改进 | ODConv卷积助力极限涨点(附修改后的C2f、Bottleneck模块代码) 一、本文介绍 这篇文章给大家带来的是发表于2022年的ODConv(Omni-Dimensional Dynamic Convolution)中文名字全维度动态卷积,该卷积可以即插即用,可以直接替换网络结构中的任何一个卷积模块,在本文的末尾提供可以直接替换卷积模块的ODConv,...