LSKNet是一种改进的目标检测网络,具有处理旋转目标和自适应感受野的能力。通过引入注意力机制,该网络进一步提升了目标检测的准确性。我们将其引入到YoloV8网络,进一步探索LSKNet在Yolo系列框架的应用,优化网络的性能。 Yolov8官方结果 代码语言:javascript 复制 YOLOv8lsummary(fused):268layers,43631280parameters,0gradien...
Head部分相比Yolov5改动较大,直接将耦合头改为类似Yolo的解耦头结构(Decoupled-Head),将回归分支和预测分支分离,并针对回归分支使用了Distribution Focal Loss策略中提出的积分形式表示法。之前的目标检测网络将回归坐标作为一个确定性单值进行预测,DFL将坐标转变成一个分布。 在这里插入图片描述 8.LSKNet的架构 该博客...
首次在遥感物体检测领域探索大选择性卷积核机制的工作。在没有任何附加条件的情况下,我们 LSKNet 比主流检测器轻量的多,而且在多个数据集上刷新了 SOTA!HRSC2016(98.46% mAP)、DOTA-v1.0(81.64% mAP)和 FAIR1M-v1.0(47.87% mAP)。 2. LSKNet 加入Yolov8 2.1 加入ultralytics/nn/backbone/l...
YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进-将主干特征提取网络Backbone改为LSKNet 人工智能算法研究 专注人工智能领域,擅长计算机视觉方向2 人赞同了该文章 前言 作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进...