DFL(Distribution Focal Loss)是一种用于目标检测任务的损失函数,旨在解决分类不平衡问题,并提升模型的分类性能。与传统的交叉熵损失相比,DFL损失通过引入分布焦距机制,使得模型更加关注于难以分类的样本,从而提高整体分类准确率。 2. 阐述DFL损失在YOLOv8中的作用 在YOLOv8中,DFL损失被用于优化模型的分类性能。YOLO系列...
除了分类任务外,IoU损失在YOLOv8中的所有其他任务中都会应用。 分布焦点损失(DFL) def _df_loss(pred_dist, target): """Return sum of left and right DFL losses.""" # Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391 tl = target.long...
这是因为正样本相对于负样本是非常罕见的,应该保留它们的学习信息。 DFL Loss: Distribution Focal Loss损失的提出主要是为了解决bbox的表示不够灵活(inflexible representation)问题。传统目标检测,尤其是复杂场景中,目标物体的真实边界框的定义其实是无法精确给出的(包括标注人的主观倾向,或是遮挡、模糊等造成的边界歧义...
1. DFL (Distribution Focal Loss) DFL (Distribution Focal Loss) 的原理和作用 DFL,即分布焦点损失(Distribution Focal Loss),是 Focal Loss 的一种改进,它专门设计来处理目标检测任务中的类别不平衡问题,同时允许对边界框位置的不确定性进行建模。DFL 的核心思想是将焦点损失的概念扩展到连续标签的优化问题,这在...
另一个与边界框相关的损失函数是分布焦点损失(DFL)²。DFL关注的是边界框回归的分布差异。YOLOv8中的网络不是直接预测边界框,而是预测边界框的概率分布。它旨在解决边界模糊或部分遮挡的挑战性对象。 关键点损失 复制 loss[1]+=self.keypoint_loss(pred_kpt,gt_kpt,kpt_mask,area)area:bounding box areaclass...
其中DFL损失函数的定义如下,通俗来讲就是训练的过程中,目标的边界框不应该是一个确定的数值,目标的边界框应该是一个分布,比如对于浪花这个物体而言,他的边界就是不清晰的,通过这样的损失函数可以减少网络在训练过程中出现的过拟合的现象。 image-20240816235150126 ...
损失函数设计 Loss 计算包括 2 个分支: 分类和回归分支,没有了之前的 objectness 分支。 分类分支依然采用 BCE Loss。回归分支使用了 Distribution Focal Loss(DFL Reg_max默认为16)+ CIoU Loss。3 个 Loss 采用一定权重比例加权即可(默认如下:https://github.com/ultralytics/ultralytics/blob/main/ultralytics...
DFL Loss的提出旨在解决bbox表示不够灵活的问题。在传统目标检测中,尤其是在复杂场景下,目标物体的真实边界框往往难以精确给出,这给标注带来了困难。DFL损失通过建模框的位置为一个general distribution,使得网络能够更专注于标签位置y附近的位置分布,从而提高了学习的效率。然而,为了防止分布过于随意,网络学习效率...
SIoU/GIoU:YOLOv6引入了SIoU(Shape-Aware IoU)或GIoU(Generalized Intersection over Union)损失,这些损失函数进一步考虑了形状和方向,以提高边界框预测的准确性。 3.3 VariFocal损失和DFL VariFocal损失:在YOLOX中,作者选择了传统的IoU损失,同时引入了VariFocal损失来处理分类任务,这一损失函数能够更好地处理极端类别不...
分类损失的下降意味着模型能够越来越好地识别出图片中的具体类别。再来看定向边界框损失(dfl_loss),这是YOLOv8特有的,用于评估模型对目标方向的预测准确性。从图中可见,该损失也随着训练迅速下降,这说明模型在预测对象的方向上也取得了显著进步。 最后,mAP(mean Average Precision)是衡量模型整体性能的关键指标,它...