RT-DETR由百度开发,是一款端到端目标检测器,在保持高精度的同时提供实时性能。它利用ViT的强大特性,通过解耦尺度内交互和跨尺度融合来有效处理多尺度特征。 RT-DETR具有很强的适应性,支持使用不同的解码器层灵活调整推理速度,而无需重新训练。该模型在具有TensorRT的CUDA等加速后端方面表现出色,优于许多其他实时目标检...
RT-DETR(Real-TimeDEtectionTRansformer) ,一种基于 DETR 架构的实时端到端检测器,其在速度和精度上取得了 SOTA 性能 RT-DETR是第一个实时端到端目标检测器。具体而言,我们设计了一个高效的混合编码器,通过解耦尺度内交互和跨尺度融合来高效处理多尺度特征,并提出了IoU感知的查询选择机制,以优化解码器查询的...
RT-DETR由百度开发,是一款端到端目标检测器,在保持高精度的同时提供实时性能。它利用ViT的强大特性,通过解耦尺度内交互和跨尺度融合来有效处理多尺度特征。 RT-DETR具有很强的适应性,支持使用不同的解码器层灵活调整推理速度,而无需重新训练。该模型在具有TensorRT的CUDA等加速后端方面表现出色,优于许多其他实时目标...
相同尺度的版本下,RT-DETR 比 YOLO 系列检测器的精度都更高一些,端到端速度都更快一些。 和端到端检测器对比 RT-DETR-R50 在 COCO val2017 上的精度为 53.1% AP,在 T4 GPU 上的 FPS 为 108,RT-DETR-R101 的精度为 54.3% AP,FPS 为 7...
RT-DETR是一种实时目标检测模型,它结合了两种经典的目标检测方法:Transformer和DETR(Detection Transformer)。 超越YOLOv8,飞桨推出精度最高的实时检测器RT-DETR!mp.weixin.qq.com/s/o03QM2rZNjHVto36gcV0Yw code: https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rtdetrgithub.com/...
为了解决上述问题,本研究提出了一种改进的车道抛洒物检测系统,该系统融合了RT-DETR骨干网络和HGNetv2。RT-DETR是一种新型的目标检测模型,它通过引入Transformer结构来提高目标检测的准确性和效率。而HGNetv2是一种高效的骨干网络,它可以提取更丰富的特征信息,从而进一步提高目标检测的性能。
简介:YOLO超快时代终结了 | RT-DETR用114FPS实现54.8AP,远超YOLOv8(二) 4、The Real-time DETR 4.1、方法概览 所提出的RT-DETR由Backbone、混合编码器和带有辅助预测头的Transformer解码器组成。模型体系结构的概述如图3所示。 具体来说: 首先,利用Backbone的最后3个阶段的输出特征作为编码器的输入; ...
RT-DETR-L在COCO val2017上实现了53.0%的AP,在NVIDIA Tesla T4 GPU上实现了114 FPS,而RT-DETR-X实现了54.8%的AP和74 FPS,在速度和精度方面都优于相同规模的所有YOLO检测器。因此,RT-DETR成为了一种用于实时目标检测的新的SOTA,如图1所示。 此外,提出的RT-DETR-R50实现了53.1%的AP和108 FPS,而RT-DETR-R1...
最近,基于Transformer的端到端检测器(DETR)已经取得了显著的性能。然而,DETR的高计算成本问题尚未得到有效解决,这限制了它们的实际应用,并使它们无法充分利用无后处理的好处,如非最大值抑制(NMS)。
YOLOv8引入了新的或改进的特征融合模块(如BiFPN、AFPN等),以及使用RT-DETR(Routing Transformer for Detection)等技术改进检测头。这些改进提高了模型对多尺度目标的检测能力,并改善了模型在不同尺寸目标上的检测效果。 轻量化设计 YOLOv8注重模型的轻量化设计,采用如MobileNetV4等轻量化网络结构,以及使用VanillaNet...