从模型结构看V8主要有两个大的模块构成,就是backbone和head模块,因此降低参数量我们就从这两模块开始 二、bakebone模块轻量化参数 1.CSPPC替换c2f卷积块 论文地址:https://arxiv.org/pdf/2303.03667.pdf 如上图,其中利用了PConv模块大量降低参数量 其中 PConv(部分卷积)的基本原理是利用特征图的冗余,从而减少计算...
Backbone:同样借鉴了CSP模块思想,不过将Yolov5中的C3模块替换成了C2f模块,实现了进一步轻量化,同时沿用Yolov5中的SPPF模块,并对不同尺度的模型进行精心微调,不再是无脑式一套参数用于所有模型,大幅提升了模型性能。 Neck:继续使用PAN的思想,但是通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8移除了1*1降采样层。
Ultralytics公司于2023年初发布YOLOv8模型,相较于2020年发布的YOLOv5模型,YOLOv8模型将C3模块(CSP Bottleneck with 3 convolutions)改进成C2f模块(CSP Bottleneck with 2 convolutions),C3模块和C2f模块结构如下图(a)所示。图中CBS(Convolutions Bn SiLU)模块由基础卷积(Conv)、批量归一化(BN)和激活函数(SiLU)...
具体而言,C2f模块通过多个Bottleneck结构的串并联组合,能够在保持输入输出通道一致的前提下,增强特征的重用能力,从而提高模型的整体性能。 在特征融合层,YOLOv8-seg采用了PAN-FPN结构,这一结构的设计目的是实现多尺度特征的深度融合。通过自下而上的特征融合方式,YOLOv8-seg能够有效整合来自不同层次的特征信息,确保模型...
图中CBS(Convolutions Bn SiLU)模块由基础卷积(Conv)、批量归一化(BN)和激活函数(SiLU)组成。C2f模块采用了多分支流设计,为模型提供了更丰富的梯度信息,强化了模型的特征提取能力,提高网络的学习效率。 YOLOv8模型仍然采用anchor free方法,降低检测过程中正样本框数量,并提升处理速度。此外,模型结合了GFL(generalized...
YOLOv8 是一个最新的实时对象检测算法,它是 YOLO 系列的最新作品。在 YOLOv3 的基础上,YOLOv8 进行了多项改进。YOLOv3 是基于 Darknet53 网络,而 YOLOv8 则是基于更加高效的 C2F 结构。这意味着它在网络的底层采用了与 Darknet53 类似的结构,但是在高层则采用了新的方法。
YOLOv8 采用了与前一个模型 YOLOv5 类似的 Backbone 网络,但在 CSPLayer(现在称为 C2f 模块)方面取得了显著改进。这个模块的主要目标是通过融合高层次特征和上下文信息来提高检测精度。YOLOv8 框架使用单个神经网络同时预测边界框和分类概率,简化了目标检测过程。与基于 Anchor 点的机制和特征金字塔网络相结合,YOLOv8...
此外,YOLOv8的C2F(Coarse-to-Fine)结构进一步优化了细粒度特征的利用。与YOLOv5的C3模块相比,YOLOv8的C2F模块通过精细化的特征处理策略,能够更有效地捕捉到细小目标的特征,这对于识别水果这类小型或远距离目标尤为重要。SPPF(Spatial Pyramid Pooling-Fast)模块是对YOLOv5中的SPP模块的改进,它能够通过池化操作快速...
基于YOLOv8n网络模型,提出了可以增强密集目标检测精度的改进方法:在主干网络中引入CA机制,更好捕捉跨通道交互信息及特征的位置关系;在C2f模块中引入可变形卷积网络,扩大感受野以适应形状大小不同输入的特征图;在特征融合时学习更多浅层语...
CSP结构的核心在于模块化设计,它允许网络部分地重复使用特征,从而实现更加高效的特征学习。此外,YOLOv8的Backbone部分还集成了SPP(Spatial Pyramid Pooling)和C2F(Coarse-to-Fine)结构,这些结构进一步丰富了网络对不同尺度特征的提取能力,使得检测过程可以更好地处理各种尺度的目标。