图2. 本文网络结构图。 实验结果及结论 4. 实验结果 在VisDrone-2019和HIT-UAV两个数据集上验证,本文方法在多尺度目标检测性能方面仍优于主流模型,并且对小目标检测效果提升较大。 图3显示了YOLOv7-tiny (图3a) 和本文方法 (图3b) 在VisDrone-2019测试数据集上的检测效果比较。如图3b的蓝框所示,特别是在远景...
实验背景 目标检测是计算机视觉中的重要任务,其目标是在图像中检测和定位物体。YOLO(You Only Look Once)是一种流行的目标检测算法之一,而YOLOv7-Tiny是其轻量级版本。本实验使用了 PyTorch 和 ONNX Runtime,通过 GPU 进行目标检测模型的推理。 实验环境 Python 和 PyTorch 版本信息 GPU 环境检查 !nvidia-smi 模...
图3显示了YOLOv7-tiny (图3a) 和本文方法 (图3b) 在VisDrone-2019测试数据集上的检测效果比较。如图3b的蓝框所示,特别是在远景中,可以直接观察到本文方法成功探测到的小物体比图3a所示的多,这相当于降低了小物体被遗漏或错误检测的可能性。此外,还提高了目标的检测置信度和检测精度。例如,与图3a相比,图3b中红...
在tiny模型的性能上,YOLOv7-tiny与YOLOv4-tiny-31相比,参数量减少了39%,计算量减少了49%,但AP保...
在小模型的性能中,与YOLOv4-tiny相比,YOLOv7-Tiny减少了39%的参数量和49%的计算量,但保持相同的AP。 在云GPU模型上,YOLOv7模型仍然具有更高的AP,同时减少了19%的参数量和33%的计算量。 5.3 与sota算法的比较 本文将所提出的方法与通用GPU上或边缘GPU上最先进的的目标检测器进行了比较,结果如下表所示。
由于YOLOv7-tiny是一个面向边缘GPU架构的模型,因此它将使用ReLU作为激活函数,对于其他模型,使用SiLU作为激活函数。 与当前检测器相比,YOLOv7模型有更高的检测精度和更少的参数量,超过目前已有的其他检测算法。作者还强调仅仅采用了COCO数据集从头训练,没有采用其他的额外数据集。 值得一提的是,作者最后在论文里也...
计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等...
YOLOV7提出了辅助头的一个训练方法,主要目的是通过增加训练成本,提升精度,同时不影响推理的时间,因为辅助头只会出现在训练过程中。 一、YOLOV7是什么? YOLO算法作为one-stage目标检测算法最典型的代表,其基于深度神经网络进行对象的识别和定位,运行速度很快,可以用于实时系统。
YOLOv7-tiny由于其简化的模型结构,在复杂的数据集上可能会受到限制。YOLOv5nu则表现出较为稳健的性能,虽然不是最优,但也是相对可靠的选择。 通过这些分析,我们可以得出结论,对于特定的数据集和应用场景,选择合适的YOLO版本非常关键。YOLOv8n在本次实验中展现了其在现代目标检测任务中的潜力,而YOLOv6n的高mAP也...
YOLOv8 是一个最新的实时对象检测算法,它是 YOLO 系列的最新作品。在 YOLOv3 的基础上,YOLOv8 进行了多项改进。YOLOv3 是基于 Darknet53 网络,而 YOLOv8 则是基于更加高效的 C2F 结构。这意味着它在网络的底层采用了与 Darknet53 类似的结构,但是在高层则采用了新的方法。