在该工作中,研究者再设计了模型,同时针对label assignment这一块再设计了辅助head和lead head。实验结果显示,YOLOv7基于Transformer的检测器SWIN-LCascade-Mask R-CNN的速度和准确度分别高出 509% 和 2%,并且比基于卷积的检测器 ConvNeXt-XL Cascade-Mask R-CNN速度提高 551%,准确率提高 0.7%。 论文链接: https...
YOLOv7-E6 模型(上面突出显示)在 V100 GPU 上以 56 FPS 运行,测试 AP 为 56%。这超过了基于变压器的SWIN_L Cascade-Mask R-CNN模型(9.2 FPS,53.9% AP)和基于卷积的ConvNeXt-XL(8.6 FPS,55.2% AP)。这很重要,因为其他两种型号即使在 A100 GPU 上也提供更少的 FPS,与 V100 GPU 相比,A100 GPU 更强大。
在ResNet的设计中,将每个计算块的输出与identity连接一起添加,这样的结构称为残差层。在PRN中,将identity连接乘以二进制Mask,并且只允许将某些通道的特征映射添加到计算块的输出中。将此结构称为Masked residual layer,其架构如图3所示。使用Masked residual layer的机制允许将特征图分为两部分,其中与被Mask的通道相对...
YOLOv7-E6 模型(上面突出显示)在 V100 GPU 上以 56 FPS 运行,测试 AP 为 56%。这超过了基于变压器的SWIN_L Cascade-Mask R-CNN模型(9.2 FPS,53.9% AP)和基于卷积的ConvNeXt-XL(8.6 FPS,55.2% AP)。这很重要,因为其他两种型号即使在 A100 GPU 上也提供更少的 FPS,与 V100 GPU 相比,A100 GPU 更强大。
Mask-R-CNN实例分割算法可以结合两者优点 ——— 3.防止失真和保证语义效果的精确,会在图像边缘加上灰条,同时保证图像边长可以整除2的六次方 4.图片传入主干特征提取网络,当输入的图片为1024 X 1024时,我们会获得多个特征公用层,相当于将图片划分成不同的网格,每个网格有不同的相应框,利用RPN区域建议网络,我们可...
kpt_mask=(tkpt[i][:,0::2]!=0)lkptv+=self.BCEcls(pkpt_score,kpt_mask.float())#l2 distance based loss #lkpt+=(((pkpt-tkpt[i])*kpt_mask)**2).mean()#Try to makethisloss based on distance insteadofordinary difference #oks based loss ...
基于transformer的检测器SWINLCascade-MaskR-CNN 基于卷积的检测器ConvNeXtXL级联掩码R-CNN YOLOv7优于 YOLOR、YOLOX、Scaled-YOLOv4、YOLOv5、DETR、可变形DETR、DINO-5scale-R50、ViT-Adapter-B和许多其他物体检测器的速度和精度。 训练方面:作者只在COCO数据集上从0开始训练YOLOv7,而不使用任何其他数据集或预先...
相对于其他类型的工具,YOLOv7-E6 目标检测器(56 FPS V100,55.9% AP)比基于 transformer 的检测器 SWINL Cascade-Mask R-CNN(9.2 FPS A100,53.9% AP)速度上高出 509%,精度高出 2%,比基于卷积的检测器 ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) 速度高出 551%,精度高...
基于40万表格数据集TableBank,用MaskRCNN做表格检测 《基于深度学习的自然语言处理》中/英PDF Deep Learning 中文版初版-周志华团队 【全套视频课】最全的目标检测算法系列讲解,通俗易懂! 《美团机器学习实践》_美团算法团队.pdf 《深度学习入门:基于Python的理论与实现》高清中文PDF+源码 ...
相对于其他类型的工具,YOLOv7-E6 目标检测器(56 FPS V100,55.9% AP)比基于 transformer 的检测器 SWINL Cascade-Mask R-CNN(9.2 FPS A100,53.9% AP)速度上高出 509%,精度高出 2%,比基于卷积的检测器 ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) 速度高出 551%,精度高...