# Apply NMS pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) t2 = time_synchronized() 1. 2. 3. 是否对预测结果进行二次预测分类 # Apply Classifier if classify: pred = apply_classifier(pred, modelc, img, im0s) 1. 2. 3...
from utils.general import ( check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, plot_one_box, strip_optimizer, set_logging) from utils.torch_utils import select_device, load_classifier, time_synchronized def detect(save_img=False): # 获取设置的参数数据 out, source...
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \ scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path from utils.plots import plot_one_box from utils.torch_utils import select_device, load_classifier, time_synch...
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \@@ -31,7 +37,11 @@ def detect(save_img=False): half = device.type != 'cpu' # half precision only supported on CUDA # Load model- model = attempt_load(weights, map_...
首先在coco验证集上eval一下官方开的yolov7.pt,其实是L版本(类似YOLOv5-L,YOLOX-L,PPYOLOE-L)va...
self.apply(self._init_weights) self.head.weight.data.mul_(head_init_scale) self.head.bias.data.mul_(head_init_scale) def _init_weights(self, m): if isinstance(m, (nn.Conv2d, nn.Linear)): trunc_normal_(m.weight, std=.02)
agnostic=self.agnostic_nms)t3=time_synchronized()# Apply Classifierifclassify:pred=apply_classifier(...
pred = apply_classifier(pred, modelc, img, im0s)# Process detectionsfori, detinenumerate(pred):# detections per imageifwebcam:# batch_size >= 1p, s, im0, frame = path[i],'%g: '% i, im0s[i].copy(), dataset.countelse: ...
Premium Support Enterprise-grade 24/7 support Pricing Search or jump to... Search code, repositories, users, issues, pull requests... Provide feedback We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feed...
2.标签分配策略采用的是YOLOV5的跨网格搜索,以及YOLOX的匹配策略。 3.提出的一个新的E-ELAN高效网络架构,以高效为主。 4.提出了辅助头的一个训练方法RepConv层,主要目的是通过增加训练成本,提升精度,同时不影响推理的时间,因为辅助头只会出现在训练过程中。