YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications YOLOv6 GitHub YOLOv6 YouTube preview Must Read Articles Here are a few similar blog posts that you may be interested in. YOLOv7 Object Detection Paper Explanation and Inference Fine Tuning YOLOv7 on Custom Dataset YOLO...
GitHub is where people build software. More than 150 million people use GitHub to discover, fork, and contribute to over 420 million projects.
git clone https://github.com/meituan/YOLOv6cdYOLOv6 pip install -r requirements.txt Reproduce our results on COCO Please refer toTrain COCO Dataset. Finetune on custom data Single GPU #P5 modelspython tools/train.py --batch 32 --conf configs/yolov6s_finetune.py --data data/dataset.yam...
Load custom object detection data for YOLOv6 Configure YOLOv6 model training options Train a custom YOLOv6 model Evaluate YOLOv6 performance Run YOLOv6 inference on test images Convert YOLOv6 to ONNX Apply active learning to improve YOLOv6 performance ...
YOLOv6mis also a pretty good model with 49.5 mAP and almost 50 FPS on the TESLA P100 GPU.Custom dataset training of YOLOv6Medium model should give some of the best results. Similarly,fine tuningYOLOv7provides a good balance between FPS and mAP. They can run at 56 FPS while giving more...
基于CustomOP(ASFFSim, EfficientNMS (fp16))实现的加速推理 [1] Ge Z, Liu S, Wang F, et al. Yolox: Exceeding yolo series in 2021[J]. arXiv preprint arXiv:2107.08430, 2021. [2] YOLOv6, https://github.com/meituan/YO... [
PAI-EasyCV(github.com/alibaba/Easy)是阿里云机器学习平台深耕一年多的计算机视觉算法框架,已在集团内外多个业务场景取得相关业务落地成果,主要聚焦在自监督学习/VisionTransformer等前沿视觉领域,并结合PAI-Blade等自研技术不断优化。欢迎大家参与进来一同进步。 YOLOX-PAI未来规划: 基于CustomOP(ASFFSim, EfficientNMS (...
下载地址:[https://github.com/ultralytics/yolov5] 2.安装模块 解压刚刚下载的zip文件,然后安装yolov5需要的模块,记住cmd的工作路径要在yolov5文件夹下: 打开cmd切换路径到yolov5文件夹下,并输入如下指令,安装yolov5需要的模块 pip install -r requirements.txt ...
基于CustomOP(ASFFSim, EfficientNMS (fp16))实现的加速推理 [1] Ge Z, Liu S, Wang F, et al. Yolox: Exceeding yolo series in 2021[J]. arXiv preprint arXiv:2107.08430, 2021. [2] YOLOv6,https://github.com/meituan/YOLOv6. [3] Xu S, Wang X, Lv W, et al. PP-YOLOE: An evol...
https://github.com/WongKinYiu/PyTorch_YOLOv4 https://github.com/WongKinYiu/ScaledYOLOv4 https://github.com/Megvii-BaseDetection/YOLOX https://github.com/ultralytics/yolov3 https://github.com/ultralytics/yolov5 https://github.com/DingXiaoH/RepVGG https://github.com/JUGGHM/OREPA_CVPR2022...