YOLOv5模型是sigmoid-weighted linear unit (SiLU)。Liu等观察到,像SiLU或HardSwish这样的无界激活函数对量化不友好,而具有ReLUX激活的模型由于其具有有限性,对量化具有鲁棒性。 因此,用ReLU激活对模型进行了重新训练。我们观察到从SiLU到ReLU的活化降低了1-2%。我们称这些模型为YOLOv5_relu。 3.2 COCO结果 3参考 [...
YOLO-Pose不需要对自底向上的方法进行后处理,以将检测到的关键点分组到一个骨架中,因为每个边界框都有一个相关的姿态,从而导致关键点的固有分组。与自上而下的方法不同,多个前向传播被取消,因为所有人的姿势都是局部化的。 YOLO-pose在COCO验证(90.2%AP50)和测试开发集(90.3%AP50)上获得了新的最先进的结果,...
由于YOLO-Pose的改进与Anchor的宽度和高度无关,所以YOLO-Pose可以很容易地扩展到Anchor Free的目标检测方法,如YOLOX, FCOS。 2.3 IoU Based Bounding-box Loss Function 大多数目标检测器优化了...
基于YOLOv5目标检测框架,也可以扩展到其他框架。 YOLO-Pose 也在YOLOX上在有限程度上进行了验证。图2说明了具有用于姿态估计的总体架构。 2.1 总览 YOLOv5在精度和复杂性方面都是一个非常不错的检测器。因此,选择它作为搭建的基础,并在其之上构建。YOLOv5主要关注于80个类COCO目标检测, Box head 预测每个 Anchor ...
YOLOv5模型是sigmoid-weighted linear unit (SiLU)。Liu等观察到,像SiLU或HardSwish这样的无界激活函数对量化不友好,而具有ReLUX激活的模型由于其具有有限性,对量化具有鲁棒性。 因此,用ReLU激活对模型进行了重新训练。我们观察到从SiLU到ReLU的活化降低了1-2%。我们称这些模型为YOLOv5_relu。
YOLOv5模型是sigmoid-weighted linear unit (SiLU)。Liu等观察到,像SiLU或HardSwish这样的无界激活函数对量化不友好,而具有ReLUX激活的模型由于其具有有限性,对量化具有鲁棒性。 因此,用ReLU激活对模型进行了重新训练。我们观察到从SiLU到ReLU的活化降低了1-2%。我们称这些模型为YOLOv5_relu。