改进后的YOLOv5s网络结构如下图所示。 AF-FPN structure AF-FPN在传统特征金字塔网络的基础上,增加了自适应注意力模块(AAM)和特征增强模块(FEM)。前一部分由于减少了特征通道,减少了在高层特征图中上下文信息的丢失;后一部分增强了特征金字塔的表示并加快了推理速度,同时实现了最先进的性能。AF-FPN的结构如下图所...
FPN在层次上主要依赖于自底向上的网络内特征金字塔,该金字塔从多尺度高级语义特征图构建了具有横向连接的自顶向下路径。基于此PANet进一步提出了一种基于FPN的额外的自底向上路径,以在层间特征之间共享特征信息,使得高级特征也可以在低级特征中获得足够的细节。 在神经架构搜索的帮助下,NAS-FPN使用空间搜索策略通过特征金...
对于原始YOLOv5(s,m,l,x)的网络结构不在赘述。 本文引入AF-FPN和自动学习数据增强,解决模型大小与识别精度不兼容问题,进一步提高模型的识别性能。 用AF-FPN代替原来的FPN结构,提高了多尺度目标识别能力,在识别速度和精度之间进行了有效的权衡。 1、AF-FPN AF-FPN在传统特征金字塔网络的基础上,增加了自适应注意力...
FPN在层次上主要依赖于自底向上的网络内特征金字塔,该金字塔从多尺度高级语义特征图构建了具有横向连接的自顶向下路径。基于此PANet进一步提出了一种基于FPN的额外的自底向上路径,以在层间特征之间共享特征信息,使得高级特征也可以在低级特征中获得足够的细节。 在神经架构搜索的帮助下,NAS-FPN使用空间搜索策略通过特征金...
具体改进方法可访问如下地址: YOLOv5改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(轻量化Neck、全网独家首发),点击此处即可跳转 (大家如有任何问题,随时通过链接到CSDN我的个人主页私信我咨询,看到都会在第一时间回复大家,知乎可能回复的比较慢)...
简介:在目标检测领域,YOLOv5因其出色的性能受到了广泛关注。本文将介绍YOLOv5改进系列中的一项重要改进——使用全新渐进特征金字塔网络AFPN替换原有的Neck结构,并通过实测验证其性能提升。AFPN通过自适应融合多尺度特征图,为目标检测提供了丰富的上下文信息,进一步提高了检测的精度和鲁棒性。
简介:YOLOv5改进 | 2023Neck篇 | 利用Damo-YOLO的RepGFPN改进特征融合层 一、本文介绍 本文给大家带来的改进机制是Damo-YOLO的RepGFPN(重参数化泛化特征金字塔网络),利用其优化YOLOv5的Neck部分,可以在不影响计算量的同时大幅度涨点(亲测在小目标和大目标检测的数据集上效果均表现良好涨点幅度超级高!)。RepGFPN...
这两个块的结果特征图沿着信道维度连接在一起,作为用于下游识别的EVC的输出。在实现中,在和EVC之间,Stem块用于特征平滑,而不是直接在原始特征图上实现,如YOLOv5所示。Stem块由输出通道大小为256的7×7卷积组成,随后是批处理归一化层和激活函数层。上述过程可表述为: ...
最新FPN | CFPNet即插即用,助力检测涨点,YOLOX/YOLOv5均有效 简介 目标检测是计算机视觉领域最基本但最具挑战性的研究任务之一,其目的是为输入图像中的每个目标预测唯一的边界框,该边界框不仅包含位置,还包含类别信息。在过去几年中,这项任务已被广泛开发并应用于广泛的潜在应用,例如自动驾驶和...
YOLOv5(v7.0)网络修改实践:集成YOLOX的Backbone(CSPDarknet和Pafpn) 一、背景介绍 YOLO(You Only Look Once)是一种流行的实时目标检测算法,而YOLOv5和YOLOX则是其近期的两个重要版本。YOLOv5以其高效和简洁的架构受到了广泛关注,而YOLOX则通过引入一些创新性的改进(如CSPDarknet和Pafpn)进一步提升了性能。本文将...