cv2.imwrite('out.jpg', dst_img) 推理结果图如下:
output1格式是1x32x160x160, 针对每个box通过boxes部分的1x32 跟它点乘机得到1x160x160 就得到这个box对应的预测mask信息,然后根据box大小从mask中截取roi之后,叠加到输出结果上就可以了。 OpenCV DNN推理 整个代码实现部分绝大部分跟OpenCV DNN部署YOLOv5对象检测一致,需要修改的只有两个地方,一个是推理时候的预测结...
本文将深入探讨在C++环境中,使用Yolov5模型进行ONNX推理后的结果解析。 二、Yolov5模型简介 Yolov5是一种基于深度学习的实时目标检测算法,它通过将目标检测问题转化为回归问题,使用单个神经网络同时预测多个边界框和类别。Yolov5的快速、准确和高效备受青睐,因此在实际应用中得到了广泛的应用。 三、ONNX格式与推理 ONN...
量化过程未报错,但是使用量化后的模型做推理时yolov5无结果。备注,未量化时推理正常 二、软件版本: -- 驱动版本6.0.0,CANN版本6.0.1,amct版本6.0.1 三、测试步骤: 使用yolov5的官方代码和开源模型yolov5s.pt进行实验,yolov5s.pt转化为yolov5s.onnx备用。使用coco数据集val2017的前10张图像(000000000139.jpg-...
昨天发了YOLOv5 7.0支持实例分割的推文,收到不少留言问推理速度怎么样,所以我今天测试了一下,选择的是YOLOv5s的SEG模型,导出ONNX格式之后,在OpenCV4.5.4版本上完成了推理演示与测试。 ONNX格式输入与输出 首先需要把yolov5s-seg.pt文件导出为ONNX格式,这个很简单,一条命令行搞定: ...
3.模型推理 在这里插入图片描述 3.1 infer # coding:gbk# coding:utf-8importcv2.cv2ascv2importnumpyasnpimportonnxruntimeimporttorchimporttorchvisionimporttimeimportrandomfromutils.generalimportnon_max_suppressionimportpandasaspdclassYOLOV5_ONNX(object):def__init__(self,onnx_path):'''初始化onnx'''self...
opencv yolov5推理 使用opencv推理不带后处理节点的onnx模型。 不带后处理的onnx模型可以用任意宽高的图片作为模型输入。 删除后续节点,这里提供代码和onnx结构,可以根据自己的onnx文件进行修改 import onnx onnx_file="yolov5.onnx"save="yolov5_del.onnx"model=onnx.load(onnx_file)node=model.graph.node...
cv2.imshow("dst"res1.jpg",img) cv2.waitKey(0)#cv2.imencode('.jpg', img)[1].tofile(os.path.join(dst, id + ".jpg"))returnif__main__"=YOLOV5_ONNX(onnx_path='./yolov5s6.onnx') model.infer(img_path="./data/images/bus.jpg) 结果显示:...
onnx模型推理(在原文的基础上修改了一些内容) #encoding=gbkimport os import cv2 import numpy as np import onnxruntime import timeCLASSES=['person','bicycle','car','motorcycle','airplane','bus','train','truck','boat','traffic light','fire hydrant','stop sign','parking meter','bench','...
YOLOv5推理速度比较 基于同一段视频文件,Python/C++代码测试结果比较如下: 说明:OpenCV DNN与OpenVINO是基于CPU测试的,ONNXRUNTIME是基于GPU版本测试的,ONNXRUNTIME的CPU版本我没有测试过。 贴几张运行时候的截图: 代码实现与说明 ONNX代码实现部分主要是参考了YOLOv5官方给出几个链接: ...