因此希望我们的曲线接近(1,1),即希望mAP曲线的面积尽可能接近1。 八、result.png —— 结果loss functions 🌳定位损失box_loss: 预测框与标定框之间的误差(CIoU),越小定位得越准; 🌳置信度损失obj_loss: 计算网络的置信度,越小判定为目标的能力越准; 🌳分类损失cls_loss: 计算锚框与对应的标定分类是否...
lobj += obji * self.balance[i] # obj loss if self.autobalance: self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() 7|0类别损失 类别损失只有正样本参与计算。类别损失的正样本并不是0,而是通过平滑标签得到的一个近似1的值。 平滑标签介绍: 通常情况下,正确的边界...
横坐标代表的是训练轮数(epoch) obj(Objectness):推测为目标检测loss均值,越小目标检测越准。 cls(Classification):推测为分类loss均值,越小分类越准。 第二个衡量指标:宏观上一般训练结果主要观察精度和召回率波动情况,波动不是很大则训练效果较好;如果训练比较好的话图上呈现的是稳步上升。 10.小感悟 Q1:在学习...
首先,训练损失(train/box_loss, train/cls_loss, train/obj_loss)和验证损失(val/box_loss, val/cls_loss, val/obj_loss)的曲线显示了模型在训练过程中的学习进度。这些损失值随着迭代次数的增加而减小,显示出模型正逐渐学习到从输入数据中识别目标的能力。在训练初期,损失曲线下降较快,随着迭代次数增加,损失下...
在train/box_loss、train/cls_loss和train/obj_loss图中,我们可以看到随着训练次数的增加,损失值稳步下降,这表明模型在优化过程中逐渐提高了对安全帽的识别精度。特别是,在初始的训练阶段,损失值迅速下降,这通常意味着模型在学习关键特征,并快速适应训练数据。 对于验证集的损失值,即val/box_loss、val/cls_loss和...
首先,观察训练过程中的盒子损失(train/box_loss),分类损失(train/cls_loss)和目标损失(train/obj_loss),可以看到随着迭代次数的增加,这三者呈现出明显的下降趋势。这表明模型在学习过程中正在改进其预测能力,并在识别和定位目标上变得更加精确。 进一步地,我们注意到验证集上的损失值(val/box_loss, val/cls_loss...
Train Box Loss')plt.plot(data['epoch'],data['train/obj_loss'],label='Train Object Loss')...
从训练和验证的损失图中可以观察到,box_loss、cls_loss和obj_loss随着训练周期的增加而稳步下降,这表明模型在逐步学习如何更准确地定位目标、分类以及预测目标的存在概率。值得注意的是,在初期,损失值下降得非常快,这通常意味着模型从原始状态迅速进入一个较好的学习状态。随后,损失下降速度放缓,这说明模型开始逐渐收敛...
定位损失box_loss:预测框与标定框之间的误差(GIoU) 置信度损失obj_loss:计算网络的置信度 分类损失cls_loss:计算锚框与对应的标定分类是否正确 基本可以看出结果较为完备(正确率约为90%),训练模型完成。 Modelmap@0.5map@[0.5,0.95]params(M)GFLOPs
d)、loss的计算过程 训练自己的YoloV4模型 一、数据集的准备 二、数据集的处理 三、开始网络训练 四、训练结果预测 学习前言 还有Pyorch版本的。 什么是YOLOV4-Tiny YOLOV4是YOLOV3的改进版,在YOLOV3的基础上结合了非常多的小Tricks。 尽管没有目标检测上革命性的改变,但是YOLOV4依然很好的结合了速度与精度。