重装后没选择CUDA版本导致我训练的时候用CPU跑半小时一轮,要注意安装CUDA版本并且在训练中调用好batch参数,我的笔记本1050ti,默认8的话只能利用50%把batch改成16后就可以跑满了) 注意事项:去东北大学宋克臣老师主页下载点击该链接NEU-DET
NEU-DET钢材表面缺陷共有六大类,分别为:'crazing','inclusion','patches','pitted_surface','rolled-in_scale','scratches' 每个类别分布为: 训练结果如下: 2.基于yolov5s的训练 map值: 2.1 Inception-MetaNeXtStage 将Inception的思想和ConvNeXt的设计相结合,从而实现了对大核深度卷积的有效分解。这...
总之,NEU表面缺陷数据库包含两个难题,即类内缺陷存在较大外观差异,类间缺陷具有相似方面,缺陷图像受到光照和材料变化的影响。对于缺陷检测任务,数据集提供了标注,标注了每个图像中缺陷的类别和位置。下图展示了数据集上的一些检测结果示例。对于每个缺陷,黄色框是表示其位置的边界框,绿色标签是类分数。
5.使用模型进行检测 1. NEU-CLS数据集 下载方式: 方式一:已上传至CSDN资源,链接如下 [钢材表面缺陷检测数据集:NEU-DET 用于钢材表面的6种缺陷检测] 方式二: 关注GZH:阿旭算法与机器学习,回复:“NEU”即可获取本文数据集 2. 实战视频链接如下 【YOLOV5应用实战项目系列】教程 3.YOLOV5模型配置及训练个人笔记 ...
本文使用NEU-DET数据集和yolov5算法对钢材表面的六种常见缺陷进行检测。 1.处理数据 (1)读入数据和标签 展开代码 classLoadImagesAndLabels(Dataset):# for training/testingdef__init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, ...
与此同时,类间缺陷也具有相似的特征,如滚积垢、裂纹和坑状表面。此外,由于光照和材料变化的影响,类内缺陷图像的灰度会发生变化。总之,NEU表面缺陷数据库包含两个难题,即类内缺陷存在较大外观差异,类间缺陷具有相似方面,缺陷图像受到光照和材料变化的影响。
此外,由于光照和材料变化的影响,类内缺陷图像的灰度会发生变化。总之,NEU表面缺陷数据库包含两个难题,即类内缺陷存在较大外观差异,类间缺陷具有相似方面,缺陷图像受到光照和材料变化的影响。 对于缺陷检测任务,数据集提供了标注,标注了每个图像中缺陷的类别和位置。下图展示了数据集上的一些检测结果示例。对于每个缺陷,...
NEU-DET钢材表面缺陷共有六大类,分别为:'crazing','inclusion','patches','pitted_surface','rolled-in_scale','scratches' 每个类别分布为: 训练结果如下: 2.基于yolov5s的训练 map值: 2.1四个检测头训练结果 map从原始的0.742提升到0.786
最初我在利用YOLOv5进行NEU-DET实验时,就发现最终结果总是有重复检测的部分。所以如何解决遮挡问题(保留更多的框)的同时,减少重复检测(保留更少的框),也是我认为nms优化算法的一个值得研究的点。 Yolov4在CIOU_Loss的基础上采用DIOU_nms的方式,可以看出,采用DIOU_nms,下方中间箭头的黄色部分,原本被遮挡的摩托车...
[钢材表面缺陷检测数据集:NEU-DET 用于钢材表面的6种缺陷检测] 方式二: 关注GZH:阿旭算法与机器学习,回复:“NEU”即可获取本文数据集 2. 实战视频链接如下 【YOLOV5应用实战项目系列】教程 3.YOLOV5模型配置及训练个人笔记 准备好数据集 图片数据集与Label数据集(txt格式)。图像名称与Label名称一一对应。我已将La...