在Neck中使用FPN和路径聚合网络(PANet)来聚合该阶段的图像特征。 最后,网络进行目标预测并通过预测输出。 本文引入AF-FPN和自动学习数据增强,解决模型大小与识别精度不兼容的问题,进一步提高模型的识别性能。用AF-FPN代替原来的FPN结构,提高了多尺度目标识别能力,在识别速度和精度之间进行了有效的权衡。此外,去除原网络...
PANet 结构是在FPN的基础上引入了 Bottom-up path augmentation 结构。 PANet[1]最大的贡献是提出了一个自顶向下和自底向上的双向融合骨干网络,同时在最底层和最高层之间添加了一条“short-cut”,用于缩短层之间的路径。PANet还提出了自适应特征池化(Adaptive Features Pooling...
特征金字塔:YOLOv5通过FPN和PANet构建了特征金字塔,这允许模型在不同的尺度上进行预测。这种多尺度预测能力使得YOLOv5能够有效地检测不同大小的目标。 自适应锚框:YOLOv5引入了自适应锚框技术,根据目标的实际大小动态调整锚框的尺寸,这进一步提升了多尺度预测的准确性。 不同尺度的特征融合:YOLOv5的Neck部分通过融合不...
在Neck中使用FPN和路径聚合网络(PANet)来聚合该阶段的图像特征。 最后,网络进行目标预测并通过预测输出。 本文引入AF-FPN和自动学习数据增强,解决模型大小与识别精度不兼容的问题,进一步提高模型的识别性能。用AF-FPN代替原来的FPN结构,提高了多尺度目标识别能力,在识别速度和精度之间进行了有效的权衡。此外,去除原网络...
PANet 结构是在FPN的基础上引入了 Bottom-up path augmentation 结构。FPN主要是通过融合高低层特征提升目标检测的效果,尤其可以提高小尺寸目标的检测效果。Bottom-up path augmentation结构可以充分利用网络浅特征进行分割,网络浅层特征信息对于目标检测非常重要,因为目标检测是像素级别的分类浅层特征多是边缘形状等特征。PA...
解决问题:原YOLOv5模型特征融合网络为PANet,虽然较FPN能更好的融合不同尺度目标的特征,从而提升效果,但是还存在改进的空间,还有更加先进的特征融合网络。之前出过改进为BIFPN加权双向特征金字塔有兴趣的朋友可以关注我看下之前的博客。现在介绍加入一种金字塔特征融合策略,称为adaptively spatial feature fusion (ASFF),它...
PANet(Path Aggregation Network)是一个用于实例分割的路径聚合网络,它充分的融合了特征。PANet总共有5个结构,如下图所示,分别是FPN(a)、Bottom-Up Path Augmentation(b)、Adaptive Feature Pooling(c)、Box branch(d)、Fully-Connected Fusion(e)。 图10 PANet结构 1)FPN上文已经介绍,这里不再赘述。2)Bottom-Up...
在Neck部分,yolov5主要采用了PANet结构。 PANet在FPN(feature pyramid network)上提取网络内特征层次结构,FPN中顶部信息流需要通过骨干网络(Backbone)逐层地往下传递,由于层数相对较多,因此计算量比较大(a)。 PANet在FPN的基础上又引入了一个自底向上(Bottom-up)的路径。经过自顶向下(Top-down)的特征融合后,再进行...
FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域。 5 Prediction 5.1 Bounding Box损失函数 Yolov5中采用其中的CIOU_Loss做Bounding box的损失函数,但是本节将详细介绍IOU_Loss系列损失函数的变迁。 IOU_Loss IOU_Loss的计算如下图所示。 从图中可以看到IOU的loss其实很简单,主要是交集/并集,但其实也存...
在Neck部分,yolov5主要采用了PANet结构。 PANet在FPN(feature pyramid network)上提取网络内特征层次结构,FPN中顶部信息流需要通过骨干网络(Backbone)逐层地往下传递,由于层数相对较多,因此计算量比较大(a)。 PANet在FPN的基础上又引入了一个自底向上(Bottom-up)的路径。经过自顶向下(Top-down)的特征融合后,再进行...