从左至右,上至下,图中依次显示了训练集上的边框损失(train/box_loss)、分类损失(train/cls_loss)、定位损失(train/dfl_loss)、验证集上的边框损失(val/box_loss)、分类损失(val/cls_loss)、定位损失(val/dfl_loss),以及模型的精度(metrics/precision(B))、召回率(metrics/recall(B))、平均精度(metrics/mAP...
(fractions ok) warmup_momentum: 0.8 # 预热学习动量 warmup_bias_lr: 0.1 # 预热初始学习率 box: 0.05 # iou损失系数 cls: 0.5 # cls损失系数 cls_pw: 1.0 # cls BCELoss正样本权重 obj: 1.0 # 有无物体系数(scale with pixels) obj_pw: 1.0 # 有无物体BCELoss正样本权重 iou_t: 0.20 # IoU...
那么模型会偏向于预测该主要类别,导致其他类的loss趋近于0。解决方案是通过oversampling等方式平衡各类目标...
通常,PR Curve与ROC Curve(受试者工作特征曲线)一同使用,以更全面地评估分类模型的性能。 result.png 🌳定位损失box_loss: 预测框与标定框之间的误差(CIoU),越小定位得越准; 1. 🌳置信度损失obj_loss: 计算网络的置信度,越小判定为目标的能力越准; 1. 🌳分类损失cls_loss: 计算锚框与对应的标定分类...
首先,训练损失的曲线显示了模型在训练过程中损失逐渐减小,其中包括框损失(box_loss)、类别损失(cls_loss)和方向损失(dfI_loss)。这些损失的下降趋势表明模型对于跌倒检测任务正在逐步获得更好的学习效果。特别是框损失的下降,说明模型在定位跌倒对象的边界框方面表现越来越准确。类别损失的降低也意味着模型在分类跌倒与非...
在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在logs目录下找到生成对若干训练过程统计图。下图为博主训练犬种类识别的模型训练曲线图。
🌳分类损失cls_loss: 计算锚框与对应的标定分类是否正确,越小分类得越准; 🌳mAP@0.5:0.95(mAP@[0.5:0.95]) 表示在不同IoU阈值(从0.5到0.95,步长0.05)(0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95)上的平均mAP; 🌳mAP@0.5: 表示阈值大于0.5的平均mAP ...
在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在logs目录下找到生成对若干训练过程统计图。下图为博主训练生活垃圾类识别的模型训练曲线图。
首先,训练损失的曲线显示了模型在训练过程中损失逐渐减小,其中包括框损失(box_loss)、类别损失(cls_loss)和方向损失(dfI_loss)。这些损失的下降趋势表明模型对于跌倒检测任务正在逐步获得更好的学习效果。特别是框损失的下降,说明模型在定位跌倒对象的边界框方面表现越来越准确。类别损失的降低也意味着模型在分类跌倒与非...
在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在runs/train目录下找到生成对若干训练过程统计图。