Dataset Network Sample selection Box-loss Cls-loss Obj-loss Loss 本文主要从7部分讲诉网络,由于Yolov5还没有公开发表文章,以下都是博主从代码中理解的,若有错误请指正。 一些训练细节可参考 vincent:Yolov5笔记(二)2 赞同 · 0 评论文章 分别为Dataset、Network、Sample Selection、Box-loss、Cls-loss、Obj-lo...
置信度损失(obj_loss):该损失用于衡量模型预测的框(即包含对象的矩形)与真实框之间的差异。 边界框损失(box_loss):该损失用于衡量模型预测的边界框与真实边界框之间的差异,这有助于确保模型能够准确地定位对象。 这些损失函数在训练模型时被组合使用,以优化模型的性能。通过使用这些损失函数,YOLOv5可以准确地识别图像...
YOLOv5的损失主要包含三个方面: 矩形框损失(bbox_loss)、分类损失(cls_loss)、置信度损失(obj_loss)。 总损失的表达式为: Loss=box_gain×bbox_loss+cls_gain×cls_loss+obj_gain×obj_loss 其中b o x _ g a i n box\_gainbox_gain、c l s _ g a i n 分别对应不同的损失权重,默认值分别为0....
在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在logs目录下找到生成对若干训练过程统计图。下图为博主训练农作物叶片识别的模型训练曲线图。 以下是训练过程中终...
在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在runs/train目录下找到生成对若干训练过程统计图。
在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在logs/目录下找到生成对若干训练过程统计图。 我们通过设定不同的置信度的阈值,可以得到在模型在不同的阈值下...
device) # box loss lobj = torch.zeros(1, device=self.device) # object loss tcls, tbox, indices, anchors = self.build_targets(p, targets, imgs) # targets """ tcls 保存类别id tbox 保存的是gt中心相对于所在grid cell左上角偏移量。也会计算出gt中心相对扩展anchor的偏移量 indices 保存的...
可以看到box的loss是1-giou的值。 2.lobj部分 lobj代表置信度,即该bounding box中是否含有物体的概率。在yolov3代码中obj loss可以通过arc来指定,有两种模式: 如果采用default模式,使用BCEWithLogitsLoss,将obj loss和cls loss分开计算: BCEobj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']]), reduc...
在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在logs目录下找到生成对若干训练过程统计图。下图为博主训练生活垃圾类识别的模型训练曲线图。
在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在logs目录下找到生成对若干训练过程统计图。下图为博主训练生活垃圾类识别的模型训练曲线图。