将YOLOv5中原有的特征金字塔网络替换为AF-FPN,在保证实时检测的前提下,提高了YOLOv5网络对多尺度目标的检测性能。 此外,提出了一种新的自动学习数据增强方法,以丰富数据集,提高模型的鲁棒性,使其更适合于实际场景。在100K (TT100K)数据集上的大量实验结果表明,与几种先进方法相比,本文方法的有效性和优越性得到了...
最后,网络通过Prediction进行目标预测和输出。 研究者引入AF-FPN和自动学习数据增强来解决模型大小和识别精度不兼容的问题,进一步提高模型的识别性能。将原有的FPN结构替换为AF-FPN,以提高识别多尺度目标的能力,并在识别速度和准确率之间做出有效的权衡。 此外,研究者去除原始网络中的mosaic augmentation,并根据自动学习数...
改进后的YOLOv5s网络结构如下图所示。 AF-FPN structure AF-FPN在传统特征金字塔网络的基础上,增加了自适应注意力模块(AAM)和特征增强模块(FEM)。前一部分由于减少了特征通道,减少了在高层特征图中上下文信息的丢失;后一部分增强了特征金字塔的表示并加快了推理速度,同时实现了最先进的性能。AF-FPN的结构如下图所...
一、概要 本文提出了一种改进的特征金字塔模型AF-FPN,该模型利用自适应注意力模块(adaptive attention module,AAM)和特征增强模块(feature enhancement module,FEM)来减少特征图生成过程中的信息丢失,进而提高特征金字塔的表示能力。 (1)改进1: 将YOLOv5中原有的特征金字塔即Neck部分的PANet,替换为AF-FPN,在保证实时检...
1、AF-FPN AF-FPN在传统特征金字塔网络的基础上,增加了自适应注意力模块(AAM)和特征增强模块(FEM)。前者减少了特征通道,减少了高层特征图中上下文信息的丢失。后一部分增强了特征金字塔的表示,提高了推理速度,同时实现了最先进的性能。AF-FPN结构如图2所示。 图2 AF-FPN结构 输入图像通过多个卷积生成特征映射{C1,...
3.2 架构改进1、AF-FPN AF-FPN在传统特征金字塔网络的基础上,增加了自适应注意力模块(AAM)和特征增强模块(FEM)。前者减少了特征通道,减少了高层特征图中上下文信息的丢失。后一部分增强了特征金字塔的表示,提高了推理速度,同时实现了最先进的性能。AF-FPN结构如图2所示。
改进的YOLO,AF-FPN替换金字塔模块,提升目标检测精度#人工智能 #ai #论文 #目标检测算法 #yolov5 - 学算法的Amy于20230401发布在抖音,已经收获了13.5万个喜欢,来抖音,记录美好生活!
将YOLOv5中原有的特征金字塔网络替换为AF-FPN,在保证实时检测的前提下,提高了YOLOv5网络对多尺度目标的检测性能。 此外,提出了一种新的自动学习数据增强方法,以丰富数据集,提高模型的鲁棒性,使其更适合于实际场景。在100K (TT100K)数据集上的大量实验结果表明,与几种先进方法相比,本文方法的有效性和优越性得到了...
1、AF-FPN AF-FPN在传统特征金字塔网络的基础上,增加了自适应注意力模块(AAM)和特征增强模块(FEM)。前者减少了特征通道,减少了高层特征图中上下文信息的丢失。后一部分增强了特征金字塔的表示,提高了推理速度,同时实现了最先进的性能。AF-FPN结构如图2所示。
FPN是YOLOv5的加强特征提取网络,将主干部分获得的有效特征层进行特征融合,特征融合的目的是结合不同尺度的特征信息。在FPN部分,用获得的有效特征层提取特征,使用Panet的结构对特征进行上采样和下采样实现特征融合。 YOLO Head是YOLOv5的分类器与回归器,对特...