最后,网络通过Prediction进行目标预测和输出。 研究者引入AF-FPN和自动学习数据增强来解决模型大小和识别精度不兼容的问题,进一步提高模型的识别性能。将原有的FPN结构替换为AF-FPN,以提高识别多尺度目标的能力,并在识别速度和准确率之间做出有效的权衡。 此外,研究者去除原始网络中的mosaic augmentation,并根据自动学习数...
将YOLOv5中原有的特征金字塔网络替换为AF-FPN,在保证实时检测的前提下,提高了YOLOv5网络对多尺度目标的检测性能。 此外,提出了一种新的自动学习数据增强方法,以丰富数据集,提高模型的鲁棒性,使其更适合于实际场景。在100K (TT100K)数据集上的大量实验结果表明,与几种先进方法相比,本文方法的有效性和优越性得到了...
用AF-FPN代替原来的FPN结构,提高了多尺度目标识别能力,在识别速度和精度之间进行了有效的权衡。 1、AF-FPN AF-FPN在传统特征金字塔网络的基础上,增加了自适应注意力模块AAM和特征增强模块FEM。整体结构如下: 输入图像通过多个卷积生成特征映射{C1,C2,C3,C4,C5}.C5 通过AAM生成特征映射M6. M6与M5求和,求和结果在...
改进后的YOLOv5s网络结构如下图所示。 AF-FPN structure AF-FPN在传统特征金字塔网络的基础上,增加了自适应注意力模块(AAM)和特征增强模块(FEM)。前一部分由于减少了特征通道,减少了在高层特征图中上下文信息的丢失;后一部分增强了特征金字塔的表示并加快了推理速度,同时实现了最先进的性能。AF-FPN的结构如下图所...
1、AF-FPN AF-FPN在传统特征金字塔网络的基础上,增加了自适应注意力模块(AAM)和特征增强模块(FEM)。前者减少了特征通道,减少了高层特征图中上下文信息的丢失。后一部分增强了特征金字塔的表示,提高了推理速度,同时实现了最先进的性能。AF-FPN结构如图2所示。 图2 AF-FPN结构 输入图像通过多个卷积生成特征映射{C1,...
PANet 结构是在FPN的基础上引入了 Bottom-up path augmentation 结构。 PANet[1]最大的贡献是提出了一个自顶向下和自底向上的双向融合骨干网络,同时在最底层和最高层之间添加了一条“short-cut”,用于缩短层之间的路径。PANet还提出了自适应特征池化(Adaptive Features Pooling...
将YOLOv5中原有的特征金字塔网络替换为AF-FPN,在保证实时检测的前提下,提高了YOLOv5网络对多尺度目标的检测性能。 此外,提出了一种新的自动学习数据增强方法,以丰富数据集,提高模型的鲁棒性,使其更适合于实际场景。在100K (TT100K)数据集上的大量实验结果表明,与几种先进方法相比,本文方法的有效性和优越性得到了...
input、backbone、neck和head四个模块,yolov5对yolov4网络的四个部分都进行了修改,并取得了较大的提升,在input端使用了Mosaic数据增强、自适应锚框计算、自适应图片缩放; 在backbone端使用了Focus结构与CSP结构;在neck端添加了FPN+PAN结构;在head端改进了训练时的损失函数,使用GIOU_Loss,以及预测框筛选的DIOU_nms。
input、backbone、neck和head四个模块,yolov5对yolov4网络的四个部分都进行了修改,并取得了较大的提升,在input端使用了Mosaic数据增强、自适应锚框计算、自适应图片缩放; 在backbone端使用了Focus结构与CSP结构;在neck端添加了FPN+PAN结构;在head端改进了训练时的损失函数,使用GIOU_Loss,以及预测框筛选的DIOU_nms。
FPN是YOLOv5的加强特征提取网络,将主干部分获得的有效特征层进行特征融合,特征融合的目的是结合不同尺度的特征信息。在FPN部分,用获得的有效特征层提取特征,使用Panet的结构对特征进行上采样和下采样实现特征融合。 YOLO Head是YOLOv5的分类器与回归器,对特...